I need to figure out how fitdistr is vectorizing the calls to the distribution functions, so I can appropriately build the 2Dt function and think sensibly about the truncated distributions.
The gory details are below, but in summary:
- The parameter values are never vectorized
x
andq
(passed toddist
andpdist
respectively) may be vectorsx
andq
may have length zero (which will need to be trapped for when I’m not just passing them on to a predefined distribution) (I don’t know why!)x
andq
may have values NA, NaN, Inf (again, I’ll need to do some trapping)
So I’ll make a distribution that reports its inputs:
dmylnorm <- function(x, meanlog = 0, sdlog = 1, log = FALSE) {
cat("In dmylnorm \n")
cat("x:", x, "\n")
cat("meanlog:", meanlog, "\n")
cat("sdlog:", sdlog, "\n")
dlnorm(x, meanlog, sdlog, log)
}
dmylnorm(1:10)
In dmylnorm
x: 1 2 3 4 5 6 7 8 9 10
meanlog: 0
sdlog: 1
[1] 0.398942280 0.156874019 0.072728256 0.038153457 0.021850715
[6] 0.013354538 0.008581626 0.005739296 0.003965747 0.002815902
dmylnorm(1, (1:10)/10)
In dmylnorm
x: 1
meanlog: 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
sdlog: 1
[1] 0.3969525 0.3910427 0.3813878 0.3682701 0.3520653 0.3332246 0.3122539
[8] 0.2896916 0.2660852 0.2419707
pmylnorm <- function(q, meanlog = 0, sdlog = 1, lower.tail = TRUE, log.p = FALSE) {
cat("In pmylnorm \n")
cat("q:", q, "\n")
cat("meanlog:", meanlog, "\n")
cat("sdlog:", sdlog, "\n")
plnorm(q, meanlog, sdlog, lower.tail, log.p)
}
So let’s generate some data and run it through fitdist
:
mydat <- rlnorm(20)
mydat
[1] 0.5904349 2.9247735 2.2196987 0.8539104 1.3832922 0.8819703
[7] 2.0710698 0.1524415 2.3086514 1.2646456 16.0086215 0.8155863
[13] 0.9015805 0.2559542 1.6114184 2.1547082 0.5778989 0.6185283
[19] 0.4560678 0.6797890
fitdist(mydat, "mylnorm", start = list(meanlog = 0, sdlog = 1))
In dmylnorm
x:
meanlog: 0
sdlog: 1
In dmylnorm
x: 0 1 Inf NaN -1
meanlog: 0
sdlog: 1
In dmylnorm
x: 0 1 NA
meanlog: 0
sdlog: 1
In dmylnorm
x: 0 1
meanlog: 0
sdlog: -1
In pmylnorm
q:
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 1 Inf NaN -1
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 1 NA
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 1
meanlog: 0
sdlog: -1
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0
sdlog: 1
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.1
sdlog: 1
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0
sdlog: 1.1
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.1
sdlog: 0.9
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.075
sdlog: 0.95
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.175
sdlog: 0.95
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.04375
sdlog: 0.9875
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.01875
sdlog: 0.9375
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.0796875
sdlog: 0.984375
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.1109375
sdlog: 0.946875
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.06054688
sdlog: 0.9773437
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.05585938
sdlog: 0.9429687
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07373047
sdlog: 0.9740234
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.05927734
sdlog: 1.001367
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07106934
sdlog: 0.9628418
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.08425293
sdlog: 0.9595215
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07832642
sdlog: 0.9639771
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07566528
sdlog: 0.9527954
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07421417
sdlog: 0.9687164
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.06695709
sdlog: 0.9675812
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07548409
sdlog: 0.9648781
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07233925
sdlog: 0.9590034
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07374544
sdlog: 0.9662882
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07816019
sdlog: 0.9683245
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07284205
sdlog: 0.9642125
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07110341
sdlog: 0.9656226
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.06891307
sdlog: 0.9659948
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.0720068
sdlog: 0.9676983
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07263324
sdlog: 0.9650839
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.0699912
sdlog: 0.9644183
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07280688
sdlog: 0.9658207
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07433671
sdlog: 0.9652821
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07191173
sdlog: 0.9655374
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07352839
sdlog: 0.9653672
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.0723159
sdlog: 0.9654949
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07214225
sdlog: 0.9647581
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07232338
sdlog: 0.965966
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07255577
sdlog: 0.9653044
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07464072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07364072
sdlog: 0.9665551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07364072
sdlog: 0.9645551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07064072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07164072
sdlog: 0.9665551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07164072
sdlog: 0.9645551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07364072
sdlog: 0.9665551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07164072
sdlog: 0.9665551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9675551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07364072
sdlog: 0.9645551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07164072
sdlog: 0.9645551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9655551
In dmylnorm
x: 0.5904349 2.924773 2.219699 0.8539104 1.383292 0.8819703 2.07107 0.1524415 2.308651 1.264646 16.00862 0.8155863 0.9015805 0.2559542 1.611418 2.154708 0.5778989 0.6185283 0.4560678 0.679789
meanlog: 0.07264072
sdlog: 0.9635551
Fitting of the distribution ' mylnorm ' by maximum likelihood
Parameters:
estimate Std. Error
meanlog 0.07264072 0.2159047
sdlog 0.96555506 0.1526871
So it is using vector values of x
and q
, but not of the parameters. In fact, after the initial setup, it looks like it’s not using the pdist at all!
Now let’s double-check the censored data fitting:
mydatcens <- data.frame(left = floor(mydat), right = ceiling(mydat))
mydatcens
left right
1 0 1
2 2 3
3 2 3
4 0 1
5 1 2
6 0 1
7 2 3
8 0 1
9 2 3
10 1 2
11 16 17
12 0 1
13 0 1
14 0 1
15 1 2
16 2 3
17 0 1
18 0 1
19 0 1
20 0 1
fitdistcens(mydatcens, "mylnorm", start = list(meanlog = 0, sdlog = 1))
In dmylnorm
x:
meanlog: 0
sdlog: 1
In dmylnorm
x: 0 1 Inf NaN -1
meanlog: 0
sdlog: 1
In dmylnorm
x: 0 1 NA
meanlog: 0
sdlog: 1
In dmylnorm
x: 0 1
meanlog: 0
sdlog: -1
In pmylnorm
q:
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 1 Inf NaN -1
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 1 NA
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 1
meanlog: 0
sdlog: -1
In dmylnorm
x:
meanlog: 0
sdlog: 1
In pmylnorm
q:
meanlog: 0
sdlog: 1
In pmylnorm
q:
meanlog: 0
sdlog: 1
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: 0
sdlog: 1
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: 0
sdlog: 1
In dmylnorm
x:
meanlog: 0.1
sdlog: 1
In pmylnorm
q:
meanlog: 0.1
sdlog: 1
In pmylnorm
q:
meanlog: 0.1
sdlog: 1
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: 0.1
sdlog: 1
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: 0.1
sdlog: 1
In dmylnorm
x:
meanlog: 0
sdlog: 1.1
In pmylnorm
q:
meanlog: 0
sdlog: 1.1
In pmylnorm
q:
meanlog: 0
sdlog: 1.1
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: 0
sdlog: 1.1
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: 0
sdlog: 1.1
In dmylnorm
x:
meanlog: -0.1
sdlog: 1.1
In pmylnorm
q:
meanlog: -0.1
sdlog: 1.1
In pmylnorm
q:
meanlog: -0.1
sdlog: 1.1
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1
sdlog: 1.1
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1
sdlog: 1.1
In dmylnorm
x:
meanlog: -0.2
sdlog: 1.15
In pmylnorm
q:
meanlog: -0.2
sdlog: 1.15
In pmylnorm
q:
meanlog: -0.2
sdlog: 1.15
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.2
sdlog: 1.15
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.2
sdlog: 1.15
In dmylnorm
x:
meanlog: -0.2
sdlog: 1.25
In pmylnorm
q:
meanlog: -0.2
sdlog: 1.25
In pmylnorm
q:
meanlog: -0.2
sdlog: 1.25
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.2
sdlog: 1.25
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.2
sdlog: 1.25
In dmylnorm
x:
meanlog: -0.3
sdlog: 1.375
In pmylnorm
q:
meanlog: -0.3
sdlog: 1.375
In pmylnorm
q:
meanlog: -0.3
sdlog: 1.375
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.3
sdlog: 1.375
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.3
sdlog: 1.375
In dmylnorm
x:
meanlog: -0.4
sdlog: 1.3
In pmylnorm
q:
meanlog: -0.4
sdlog: 1.3
In pmylnorm
q:
meanlog: -0.4
sdlog: 1.3
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.4
sdlog: 1.3
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.4
sdlog: 1.3
In dmylnorm
x:
meanlog: -0.1
sdlog: 1.15
In pmylnorm
q:
meanlog: -0.1
sdlog: 1.15
In pmylnorm
q:
meanlog: -0.1
sdlog: 1.15
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1
sdlog: 1.15
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1
sdlog: 1.15
In dmylnorm
x:
meanlog: -0.1
sdlog: 1.25
In pmylnorm
q:
meanlog: -0.1
sdlog: 1.25
In pmylnorm
q:
meanlog: -0.1
sdlog: 1.25
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1
sdlog: 1.25
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1
sdlog: 1.25
In dmylnorm
x:
meanlog: -0.125
sdlog: 1.225
In pmylnorm
q:
meanlog: -0.125
sdlog: 1.225
In pmylnorm
q:
meanlog: -0.125
sdlog: 1.225
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.125
sdlog: 1.225
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.125
sdlog: 1.225
In dmylnorm
x:
meanlog: -0.225
sdlog: 1.325
In pmylnorm
q:
meanlog: -0.225
sdlog: 1.325
In pmylnorm
q:
meanlog: -0.225
sdlog: 1.325
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.225
sdlog: 1.325
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.225
sdlog: 1.325
In dmylnorm
x:
meanlog: -0.13125
sdlog: 1.19375
In pmylnorm
q:
meanlog: -0.13125
sdlog: 1.19375
In pmylnorm
q:
meanlog: -0.13125
sdlog: 1.19375
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.13125
sdlog: 1.19375
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.13125
sdlog: 1.19375
In dmylnorm
x:
meanlog: -0.19375
sdlog: 1.28125
In pmylnorm
q:
meanlog: -0.19375
sdlog: 1.28125
In pmylnorm
q:
meanlog: -0.19375
sdlog: 1.28125
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.19375
sdlog: 1.28125
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.19375
sdlog: 1.28125
In dmylnorm
x:
meanlog: -0.146875
sdlog: 1.215625
In pmylnorm
q:
meanlog: -0.146875
sdlog: 1.215625
In pmylnorm
q:
meanlog: -0.146875
sdlog: 1.215625
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.146875
sdlog: 1.215625
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.146875
sdlog: 1.215625
In dmylnorm
x:
meanlog: -0.221875
sdlog: 1.240625
In pmylnorm
q:
meanlog: -0.221875
sdlog: 1.240625
In pmylnorm
q:
meanlog: -0.221875
sdlog: 1.240625
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.221875
sdlog: 1.240625
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.221875
sdlog: 1.240625
In dmylnorm
x:
meanlog: -0.1492188
sdlog: 1.228906
In pmylnorm
q:
meanlog: -0.1492188
sdlog: 1.228906
In pmylnorm
q:
meanlog: -0.1492188
sdlog: 1.228906
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1492188
sdlog: 1.228906
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1492188
sdlog: 1.228906
In dmylnorm
x:
meanlog: -0.09609375
sdlog: 1.194531
In pmylnorm
q:
meanlog: -0.09609375
sdlog: 1.194531
In pmylnorm
q:
meanlog: -0.09609375
sdlog: 1.194531
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.09609375
sdlog: 1.194531
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.09609375
sdlog: 1.194531
In dmylnorm
x:
meanlog: -0.1740234
sdlog: 1.236133
In pmylnorm
q:
meanlog: -0.1740234
sdlog: 1.236133
In pmylnorm
q:
meanlog: -0.1740234
sdlog: 1.236133
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1740234
sdlog: 1.236133
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1740234
sdlog: 1.236133
In dmylnorm
x:
meanlog: -0.1763672
sdlog: 1.249414
In pmylnorm
q:
meanlog: -0.1763672
sdlog: 1.249414
In pmylnorm
q:
meanlog: -0.1763672
sdlog: 1.249414
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1763672
sdlog: 1.249414
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1763672
sdlog: 1.249414
In dmylnorm
x:
meanlog: -0.154248
sdlog: 1.224072
In pmylnorm
q:
meanlog: -0.154248
sdlog: 1.224072
In pmylnorm
q:
meanlog: -0.154248
sdlog: 1.224072
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.154248
sdlog: 1.224072
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.154248
sdlog: 1.224072
In dmylnorm
x:
meanlog: -0.1790527
sdlog: 1.231299
In pmylnorm
q:
meanlog: -0.1790527
sdlog: 1.231299
In pmylnorm
q:
meanlog: -0.1790527
sdlog: 1.231299
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1790527
sdlog: 1.231299
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1790527
sdlog: 1.231299
In dmylnorm
x:
meanlog: -0.1566772
sdlog: 1.229504
In pmylnorm
q:
meanlog: -0.1566772
sdlog: 1.229504
In pmylnorm
q:
meanlog: -0.1566772
sdlog: 1.229504
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1566772
sdlog: 1.229504
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1566772
sdlog: 1.229504
In dmylnorm
x:
meanlog: -0.1369019
sdlog: 1.217444
In pmylnorm
q:
meanlog: -0.1369019
sdlog: 1.217444
In pmylnorm
q:
meanlog: -0.1369019
sdlog: 1.217444
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1369019
sdlog: 1.217444
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1369019
sdlog: 1.217444
In dmylnorm
x:
meanlog: -0.164743
sdlog: 1.231461
In pmylnorm
q:
meanlog: -0.164743
sdlog: 1.231461
In pmylnorm
q:
meanlog: -0.164743
sdlog: 1.231461
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.164743
sdlog: 1.231461
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.164743
sdlog: 1.231461
In dmylnorm
x:
meanlog: -0.1671722
sdlog: 1.236893
In pmylnorm
q:
meanlog: -0.1671722
sdlog: 1.236893
In pmylnorm
q:
meanlog: -0.1671722
sdlog: 1.236893
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1671722
sdlog: 1.236893
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1671722
sdlog: 1.236893
In dmylnorm
x:
meanlog: -0.1639412
sdlog: 1.233688
In pmylnorm
q:
meanlog: -0.1639412
sdlog: 1.233688
In pmylnorm
q:
meanlog: -0.1639412
sdlog: 1.233688
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1639412
sdlog: 1.233688
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1639412
sdlog: 1.233688
In dmylnorm
x:
meanlog: -0.172007
sdlog: 1.235644
In pmylnorm
q:
meanlog: -0.172007
sdlog: 1.235644
In pmylnorm
q:
meanlog: -0.172007
sdlog: 1.235644
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.172007
sdlog: 1.235644
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.172007
sdlog: 1.235644
In dmylnorm
x:
meanlog: -0.1605097
sdlog: 1.231039
In pmylnorm
q:
meanlog: -0.1605097
sdlog: 1.231039
In pmylnorm
q:
meanlog: -0.1605097
sdlog: 1.231039
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1605097
sdlog: 1.231039
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1605097
sdlog: 1.231039
In dmylnorm
x:
meanlog: -0.1613115
sdlog: 1.228812
In pmylnorm
q:
meanlog: -0.1613115
sdlog: 1.228812
In pmylnorm
q:
meanlog: -0.1613115
sdlog: 1.228812
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1613115
sdlog: 1.228812
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1613115
sdlog: 1.228812
In dmylnorm
x:
meanlog: -0.1619689
sdlog: 1.230031
In pmylnorm
q:
meanlog: -0.1619689
sdlog: 1.230031
In pmylnorm
q:
meanlog: -0.1619689
sdlog: 1.230031
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1619689
sdlog: 1.230031
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1619689
sdlog: 1.230031
In dmylnorm
x:
meanlog: -0.1577356
sdlog: 1.22961
In pmylnorm
q:
meanlog: -0.1577356
sdlog: 1.22961
In pmylnorm
q:
meanlog: -0.1577356
sdlog: 1.22961
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1577356
sdlog: 1.22961
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1577356
sdlog: 1.22961
In dmylnorm
x:
meanlog: -0.1629912
sdlog: 1.230998
In pmylnorm
q:
meanlog: -0.1629912
sdlog: 1.230998
In pmylnorm
q:
meanlog: -0.1629912
sdlog: 1.230998
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1629912
sdlog: 1.230998
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1629912
sdlog: 1.230998
In dmylnorm
x:
meanlog: -0.1644504
sdlog: 1.22999
In pmylnorm
q:
meanlog: -0.1644504
sdlog: 1.22999
In pmylnorm
q:
meanlog: -0.1644504
sdlog: 1.22999
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1644504
sdlog: 1.22999
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1644504
sdlog: 1.22999
In dmylnorm
x:
meanlog: -0.1614949
sdlog: 1.230777
In pmylnorm
q:
meanlog: -0.1614949
sdlog: 1.230777
In pmylnorm
q:
meanlog: -0.1614949
sdlog: 1.230777
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1614949
sdlog: 1.230777
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1614949
sdlog: 1.230777
In dmylnorm
x:
meanlog: -0.1625171
sdlog: 1.231744
In pmylnorm
q:
meanlog: -0.1625171
sdlog: 1.231744
In pmylnorm
q:
meanlog: -0.1625171
sdlog: 1.231744
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1625171
sdlog: 1.231744
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1625171
sdlog: 1.231744
In dmylnorm
x:
meanlog: -0.1623801
sdlog: 1.231316
In pmylnorm
q:
meanlog: -0.1623801
sdlog: 1.231316
In pmylnorm
q:
meanlog: -0.1623801
sdlog: 1.231316
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1623801
sdlog: 1.231316
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1623801
sdlog: 1.231316
In dmylnorm
x:
meanlog: -0.1608838
sdlog: 1.231094
In pmylnorm
q:
meanlog: -0.1608838
sdlog: 1.231094
In pmylnorm
q:
meanlog: -0.1608838
sdlog: 1.231094
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1608838
sdlog: 1.231094
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1608838
sdlog: 1.231094
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1633495
sdlog: 1.231561
In pmylnorm
q:
meanlog: -0.1633495
sdlog: 1.231561
In pmylnorm
q:
meanlog: -0.1633495
sdlog: 1.231561
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1633495
sdlog: 1.231561
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1633495
sdlog: 1.231561
In dmylnorm
x:
meanlog: -0.1619585
sdlog: 1.230973
In pmylnorm
q:
meanlog: -0.1619585
sdlog: 1.230973
In pmylnorm
q:
meanlog: -0.1619585
sdlog: 1.230973
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1619585
sdlog: 1.230973
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1619585
sdlog: 1.230973
In dmylnorm
x:
meanlog: -0.1604643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1604643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1604643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1604643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1604643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1614643
sdlog: 1.232022
In dmylnorm
x:
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1614643
sdlog: 1.230022
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1644643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1644643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1644643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1644643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1644643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1634643
sdlog: 1.232022
In dmylnorm
x:
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1634643
sdlog: 1.230022
In dmylnorm
x:
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1614643
sdlog: 1.232022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1614643
sdlog: 1.232022
In dmylnorm
x:
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1634643
sdlog: 1.232022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1634643
sdlog: 1.232022
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.233022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.233022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.233022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.233022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.233022
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1614643
sdlog: 1.230022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1614643
sdlog: 1.230022
In dmylnorm
x:
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q:
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1634643
sdlog: 1.230022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1634643
sdlog: 1.230022
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.231022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.231022
In dmylnorm
x:
meanlog: -0.1624643
sdlog: 1.229022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.229022
In pmylnorm
q:
meanlog: -0.1624643
sdlog: 1.229022
In pmylnorm
q: 1 3 3 1 2 1 3 1 3 2 17 1 1 1 2 3 1 1 1 1
meanlog: -0.1624643
sdlog: 1.229022
In pmylnorm
q: 0 2 2 0 1 0 2 0 2 1 16 0 0 0 1 2 0 0 0 0
meanlog: -0.1624643
sdlog: 1.229022
Fitting of the distribution ' mylnorm ' on censored data by maximum likelihood
Parameters:
estimate
meanlog -0.1624643
sdlog 1.2310220