So, we are now ready to do some analyses. Let’s look at simulated Ler mean and variability over 6 generations.
n_init <- 50
Ler_params$gap_size <- 0
controls <- list(
n_reps = 10,
DS_seeds = TRUE,
ES_seeds = TRUE,
kernel_stoch = TRUE,
kernel_stoch_pots = TRUE,
seed_sampling = TRUE,
pot_width = 7
)
Adults <- matrix(n_init, controls$n_reps, 1)
for (i in 1:6) {
Adults <- iterate_genotype(Adults, Ler_params, controls)
}
Adults
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 119 182 181 192 228 277 138 219 186 113 123 60 10
[2,] 586 374 679 944 378 886 858 612 975 439 607 336 144
[3,] 112 158 108 90 123 299 220 193 94 87 40 19 6
[4,] 757 524 688 719 338 642 968 878 448 799 529 482 211
[5,] 285 353 313 461 219 389 165 401 195 461 316 210 64
[6,] 342 661 743 608 924 649 811 811 551 485 398 731 311
[7,] 351 539 524 630 437 756 376 703 373 613 296 316 103
[8,] 331 464 288 314 282 442 442 439 482 339 200 179 50
[9,] 229 231 300 188 240 115 134 112 197 136 130 52 28
[10,] 307 580 424 688 416 636 756 386 444 393 340 139 58
[,14] [,15] [,16] [,17]
[1,] 2 0 0 0
[2,] 28 13 1 0
[3,] 0 0 0 0
[4,] 115 22 9 1
[5,] 207 41 20 3
[6,] 321 155 60 12
[7,] 10 0 0 0
[8,] 20 2 3 0
[9,] 6 0 0 0
[10,] 13 2 0 0
The densities do not seem to be getting nearly large enough.
Calculate the distribution, and statistics, of furthest dispersal.
npot <- ncol(Adults)
rep_sum <- t(apply(Adults[, npot:1], 1, cummax))[, npot:1]
rep_sum
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 239 239 239 239 239 213 158 158 158 135 49 15 3
[2,] 198 198 198 181 163 88 88 83 83 59 25 10 0
[3,] 274 274 274 261 261 261 261 261 261 261 151 30 2
[4,] 43 43 43 43 43 42 16 16 16 4 4 1 0
[5,] 187 187 187 161 152 121 88 82 19 3 0 0 0
[6,] 113 113 113 112 112 112 112 112 112 112 112 38 14
[7,] 28 28 28 28 28 28 26 22 22 13 6 1 0
[8,] 272 272 244 244 244 195 195 193 193 193 193 138 64
[9,] 89 89 89 89 89 89 89 89 89 86 86 20 3
[10,] 97 97 97 97 97 72 21 2 0 0 0 0 0
[,14] [,15]
[1,] 0 0
[2,] 0 0
[3,] 0 0
[4,] 0 0
[5,] 0 0
[6,] 1 0
[7,] 0 0
[8,] 6 0
[9,] 1 1
[10,] 0 0
maxd <- apply(rep_sum, 1, function(x) max((1:length(x))[x > 0]))
maxd
[1] 13 12 13 12 10 14 12 14 15 8
mean(maxd)
[1] 12.3
var(maxd)
[1] 4.233333
Now for the data:
maxd_data <- pull(subset(LerC_spread, Gap == "0p" & Generation == 6), Furthest)
maxd_data
[1] 13 13 9 19 17 10 11 20 12 16
mean(maxd_data)
[1] 14
var(maxd_data)
[1] 14.44444
OK, so the variance is way too low. This may be related to the underproduction of seeds.