14 min read

Fit RIL dispersal

Warning in .load.config(override.config): Your configuration file is
missing the following entries: tables_type. Defaults will be used.
Warning in .load.config(override.config): Your configuration contains the
following unused entries: data_tables. These will be ignored.
Warning in .check.version(config): Your configuration is compatible with version 0.8.2 of the ProjectTemplate package.
  Please run ProjectTemplate::migrate.project() to migrate to the installed version 0.9.0.

I’ve just written a data script that creates disperseRIL, an analog to disperseLer. The main difference is that there is an extra column named RIL that gives the RIL number.

There is not nearly as much replication (6 reps per RIL).

I should be able to analyze using the same functions I used for Ler:

# Pick out one RIL
disperseRILi <- filter(disperseRIL, RIL == "3")
fiteach <- fiteach_disp_unt(disperseRILi, model = "gengamma")
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 1
fiteach
  ID    model       AIC      par1      par2      par3       se1        se2
1  1 gengamma  22.36640 1.2252671 0.1551575 7.0740943 1.7965469 2.66330966
2  2 gengamma 461.23963 1.7278334 0.6198084 1.6890614 0.1471995 0.08855569
3  3 gengamma 233.75954 0.9643855 0.7038311 0.7341382 0.1597774 0.07603567
4  4 gengamma 557.43082 1.3303133 0.8380885 0.3506159 0.1596103 0.06147275
5  5 gengamma 193.07350 1.1548166 0.8942826 0.5208017 0.2594169 0.11334787
6  6 gengamma  40.32503 1.4246114 0.1056097 8.4216320 1.0679730 1.65332641
          se3
1 121.4344961
2   0.4525130
3   0.3961437
4   0.3402050
5   0.5223771
6 131.8841613
fitall <- fit_dispersal_untruncated(disperseRILi, model = "gengamma")
fitall
  ID    model     AIC     par1      par2      par3        se1        se2
1  1 gengamma 1519.24 1.271899 0.8358498 0.6427917 0.09039553 0.03890965
        se3
1 0.1921725
sum(fiteach$AIC)
[1] 1508.195

Here, the improvement with individual-level kernels is more modest (10 AIC units). Also, although it’s not printing out in the post, there is a “failed to fit” error being thrown, perhaps relevant to the high SEs in IDs 1 and 6.

I’ve realized that there are quite a few replicates with very few seeds leaving the home pot. These are causing the “failure to fit” errors, and in one case (ID == 49) there is only a single dispersing seed, which causes a fatal error.

I don’t want to throw these out entirely in the data step, as those reps may still be useful for calculating the dispersal fraction. But for kernel estimation, we need to apply some filtering (if I were fitting all the data simultaneously using mixed models of some sort, then these could stay in and just be uninformative; but that requires writing a whole new fitting infrastructure that bypasses much of fitdistr).

n_min <- 10 # Set the minimum number of dispersing seeds
dispersing_seeds <- group_by(disperseRIL, ID) %>% 
  filter(Distance > 4) %>% 
  summarize(tot_seeds=sum(Seedlings))
good_reps <- filter(dispersing_seeds, tot_seeds >= n_min) %>%
  pull(ID)
disperseRILgood <- filter(disperseRIL, ID %in% good_reps)

Let’s go ahead and fit all of the models, to check:

#fiteach <- fiteach_disp_unt(disperseRILi)
#fiteach

I dunno what’s going on with all those warnings, as the models are being fit…

But the bottom line is that the AICs for gengamma are reasonable, even for the cases with big SEs. The one thing that is the big differences is that gengamma seems never to be “best” and sometimes the half-normal is best.

Let’s charge ahead and fit them all

controls <- list(maxit = 1000)
RIL_list <- levels(disperseRILgood$RIL)
RIL_list 
 [1] "3"   "18"  "22"  "35"  "42"  "53"  "58"  "101" "133" "144" "147"
[12] "148" "180" "187"
for (i in RIL_list) {
  disperseRILi <- filter(disperseRILgood, RIL == i)
  print(c(i, unique(disperseRILi$ID)))
  fiteach <- fiteach_disp_unt(disperseRILi, model = "gengamma", control=controls)
  fitall <- fit_dispersal_untruncated(disperseRILi, model = "gengamma", control=controls)
  print(fiteach)
  print(fitall)
  print(c(i, fitall$AIC - sum(fiteach$AIC)))
}
[1] "3" "2" "3" "4" "5" "6"
  ID    model       AIC      par1      par2      par3       se1        se2
1  2 gengamma 461.23963 1.7278334 0.6198084 1.6890614 0.1471995 0.08855569
2  3 gengamma 233.75954 0.9643855 0.7038311 0.7341382 0.1597774 0.07603567
3  4 gengamma 557.43082 1.3303133 0.8380885 0.3506159 0.1596103 0.06147275
4  5 gengamma 193.07350 1.1548166 0.8942826 0.5208017 0.2594169 0.11334787
5  6 gengamma  40.32503 1.4246114 0.1056097 8.4216320 1.0679730 1.65332641
          se3
1   0.4525130
2   0.3961437
3   0.3402050
4   0.5223771
5 131.8841613
  ID    model      AIC     par1      par2      par3       se1        se2
1  2 gengamma 1496.919 1.283954 0.8321763 0.6453733 0.0907257 0.03915315
        se3
1 0.1931778
[1] "3"                "11.0899959574704"
[1] "18" "7"  "8"  "9"  "10"
  ID    model      AIC     par1      par2     par3       se1        se2
1  7 gengamma 617.6707 2.024489 0.7700768 1.145463 0.1477791 0.08037200
2  8 gengamma 648.6163 1.746894 0.7236056 1.070617 0.1283408 0.06740821
3  9 gengamma 890.5776 1.878570 0.6793835 1.553553 0.1209982 0.07109519
4 10 gengamma 147.0066 1.443729 0.4147349 2.784907 0.1898372 0.13639060
        se3
1 0.3246903
2 0.3014041
3 0.3297722
4 1.2101335
  ID    model      AIC     par1      par2     par3        se1        se2
1  7 gengamma 2331.932 1.756478 0.7916559 1.092266 0.07390388 0.03863082
        se3
1 0.1600487
[1] "18"               "28.0608288801759"
[1] "22" "11" "12" "13" "14" "15" "16"
  ID    model       AIC     par1       par2      par3        se1
1 11 gengamma 1058.2799 1.769113 0.76530741  1.629011 0.11180555
2 12 gengamma  507.2327 2.164209 0.27388850  3.922918 0.06934335
3 13 gengamma  832.6574 1.780305 0.71352916  1.254374 0.12463540
4 14 gengamma  711.5112 1.952632 0.56705828  1.216660 0.10399875
5 15 gengamma  143.7280 1.803818 0.08634291 16.634141 0.22475918
6 16 gengamma  440.0721 1.620353 0.82451653  1.116747 0.17938745
         se2        se3
1 0.06507175  0.2768596
2 0.05677516  0.9113008
3 0.06841995  0.3078828
4 0.05961989  0.3089800
5 0.45512024 87.7095420
6 0.09202790  0.3826881
  ID    model      AIC     par1      par2     par3        se1        se2
1 11 gengamma 3737.017 1.811804 0.6938882 1.470848 0.05439478 0.03141013
       se3
1 0.141333
[1] "22"               "43.5352121335927"
[1] "35" "17" "18" "19" "20" "21" "22"
<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start_params(cens_data_tble,  : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100
  ID    model      AIC     par1      par2       par3       se1        se2
1 17 gengamma 182.1036 2.663246 0.1030779 18.0628155 0.4753930 0.99631225
2 18 gengamma 127.5256 2.084347 0.2534518  4.8303363 0.6678691 0.61614958
3 20 gengamma 210.9020 1.442899 0.7458770  0.8990239 0.2345407 0.11165711
4 21 gengamma 463.1642 1.092500 0.7547178  0.3156867 0.1433143 0.05702971
5 22 gengamma 137.7818 1.526589 0.2680838  1.7280388 0.1257836 0.08330980
          se3
1 174.7250592
2  12.7006951
3   0.5484743
4   0.3399594
5   0.9007936
  ID    model      AIC    par1      par2     par3       se1        se2
1 17 gengamma 1228.254 1.34481 0.7967839 0.745091 0.1017565 0.04476098
        se3
1 0.2259475
[1] "35"               "106.776723231003"
[1] "42" "23" "24" "25" "26" "27" "28"
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

  ID    model       AIC      par1      par2      par3       se1        se2
1 23 gengamma 564.69066 1.5926594 0.7756917 1.0780307 0.1314701 0.06856613
2 24 gengamma  56.04586 1.8224211 0.1190274 8.6298006 0.6818244 1.05583842
3 25 gengamma 177.97745 2.3536462 0.3972487 3.5668910 0.1990586 0.15100252
4 26 gengamma 328.71883 1.3375672 0.6831140 1.2365766 0.1682780 0.08816501
5 27 gengamma 383.82205 1.3982076 0.5827706 1.2449128 0.1174725 0.06497981
6 28 gengamma 113.85787 0.9216354 0.7379871 0.7167837 0.2880441 0.11973567
         se3
1  0.2880336
2 76.5841153
3  1.6109422
4  0.4443124
5  0.3448104
6  0.7259135
  ID    model      AIC    par1      par2     par3        se1        se2
1 23 gengamma 1648.763 1.42393 0.7738406 1.009737 0.07825593 0.03912709
        se3
1 0.1752844
[1] "42"               "23.6503167933638"
[1] "53" "29" "31" "33" "34"
  ID    model       AIC      par1      par2        par3       se1
1 29 gengamma  60.59255 1.1911520 0.3798099  0.71666871 0.2357915
2 31 gengamma 121.53493 1.0526618 0.3849393 -1.18361954 0.1447214
3 33 gengamma  46.16282 0.8197345 0.3425022 -0.08215672 0.1764766
4 34 gengamma 167.41309 1.3002689 0.6531572  1.32977385 0.2533561
         se2       se3
1 0.10889697 1.0848568
2 0.10046424 0.6412374
3 0.07971538 0.9329292
4 0.13441587 0.7209839
  ID    model      AIC     par1      par2      par3       se1        se2
1 29 gengamma 410.5883 1.057587 0.6246299 0.1559369 0.1038779 0.04764835
        se3
1 0.2741321
[1] "53"               "14.8849515323947"
[1] "58" "35" "36" "37" "39" "40"
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start_params(cens_data_tble,  : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100
  ID    model       AIC     par1       par2       par3       se1
1 35 gengamma  90.89634 1.069996 0.61022493  0.8572706 0.2943650
2 36 gengamma 116.20471 0.798817 0.19461464 -3.6387068 0.3938943
3 37 gengamma 165.04642 1.103665 0.69947353  0.3375901 0.2253743
4 39 gengamma  52.29461 1.836463 0.09787628  9.9071205 0.5333491
         se2        se3
1 0.13131423  0.8652391
2 0.35852315  7.3387628
3 0.08851255  0.5701003
4 0.86222046 87.2920870
  ID    model      AIC     par1     par2     par3       se1        se2
1 35 gengamma 523.0619 1.203356 0.769586 0.228497 0.1390129 0.05545398
        se3
1 0.3195632
[1] "58"               "98.6198040802837"
[1] "101" "41"  "42"  "43"  "44"  "45"  "46" 
  ID    model       AIC     par1      par2       par3       se1        se2
1 41 gengamma 222.94554 1.856175 0.6298980 1.17738588 0.1834897 0.10229913
2 42 gengamma 119.70303 1.592317 0.6833304 1.14530344 0.3425708 0.18232669
3 43 gengamma  44.33462 1.076805 0.4251714 0.88668166 0.2087354 0.11051137
4 44 gengamma 165.52458 1.336526 0.6679114 0.59905075 0.2189274 0.09688699
5 45 gengamma  86.22737 1.053369 0.6187292 0.48875616 0.2536616 0.10891620
6 46 gengamma 199.56133 1.071901 0.6428720 0.06280545 0.1870046 0.07108644
        se3
1 0.4827945
2 0.8860791
3 0.7712068
4 0.5580956
5 0.7045099
6 0.5134337
  ID    model      AIC     par1      par2      par3       se1        se2
1 41 gengamma 833.2313 1.297175 0.7166021 0.4397894 0.1035254 0.04247629
       se3
1 0.250715
[1] "101"               "-5.06519854379235"
[1] "133" "48" 
  ID    model      AIC     par1      par2     par3      se1       se2
1 48 gengamma 223.4773 1.596666 0.3879888 2.483792 0.146483 0.1016036
        se3
1 0.8935616
  ID    model      AIC     par1      par2     par3      se1       se2
1 48 gengamma 223.4773 1.596666 0.3879888 2.483792 0.146483 0.1016036
        se3
1 0.8935616
[1] "133" "0"  
[1] "144" "53"  "54"  "55"  "56"  "57"  "58" 
  ID    model       AIC     par1      par2       par3       se1        se2
1 53 gengamma 191.23981 1.625857 0.5872071  0.3918415 0.1483896 0.07174308
2 54 gengamma 234.07556 1.384237 0.7633591  0.4007239 0.1896737 0.08559807
3 55 gengamma  72.14081 1.643783 0.1332387 12.1122032 0.6045252 1.06193064
4 56 gengamma 178.46781 1.559851 0.6458860  0.3471181 0.1822724 0.08251902
5 57 gengamma 175.87357 1.151634 0.8847720  0.4463656 0.3167337 0.11764031
6 58 gengamma 329.66084 1.013654 0.9051735  0.3473094 0.2283538 0.08540196
         se3
1  0.3873177
2  0.4144141
3 96.5271769
4  0.4537938
5  0.6667580
6  0.4817818
  ID    model      AIC    par1      par2      par3        se1        se2
1 53 gengamma 1195.832 1.39868 0.8058457 0.7337897 0.09469526 0.04381884
        se3
1 0.2015349
[1] "144"              "14.3739955566307"
[1] "147" "59"  "60"  "62" 
  ID    model      AIC     par1      par2      par3       se1        se2
1 59 gengamma 213.1920 1.653212 0.6543264 1.6293972 0.2153280 0.12600891
2 60 gengamma 287.1692 1.529921 0.6633226 0.5080427 0.1420315 0.06789947
3 62 gengamma 148.4892 1.366350 0.6819904 0.7722064 0.2243729 0.10710571
        se3
1 0.6232494
2 0.3392808
3 0.5524015
  ID    model      AIC     par1      par2      par3      se1       se2
1 59 gengamma 644.3591 1.516077 0.6968445 0.8841672 0.104656 0.0530847
        se3
1 0.2459879
[1] "147"               "-4.49122712074166"
[1] "148" "66"  "68"  "70" 
  ID    model      AIC     par1       par2       par3       se1       se2
1 66 gengamma 90.59293 2.346869 0.09626952 13.9361562 0.3792235 0.6872008
2 68 gengamma 85.91253 2.248477 0.10274424 14.4891755 0.5767031 1.0874215
3 70 gengamma 63.13058 1.446596 0.76281567  0.7637282 0.4635412 0.2116593
         se3
1  99.581392
2 153.426350
3   1.055185
  ID    model      AIC     par1      par2     par3       se1     se2
1 66 gengamma 233.3121 1.841696 0.5849284 2.054365 0.2430033 0.15726
        se3
1 0.8707995
[1] "148"               "-6.32396496091243"
[1] "180" "73"  "74"  "75" 
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

  ID    model       AIC     par1      par2     par3       se1       se2
1 73 gengamma 229.53446 1.937439 0.6034190 1.724475 0.1865057 0.1135445
2 74 gengamma  50.90043 1.213799 0.1302438 3.177901 0.1965197 0.2402723
3 75 gengamma  47.54043 1.219033 0.1233583 3.148747 0.2109082 0.2776897
        se3
1 0.5767455
2 6.1447966
3 7.3465353
  ID    model      AIC     par1     par2     par3       se1        se2
1 73 gengamma 370.7943 1.216838 0.719619 0.263283 0.1446475 0.06086707
        se3
1 0.3455521
[1] "180"              "42.8189577588738"
[1] "187" "77"  "78"  "79" 
<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [1]>
Error in fitdistcens(cens_data_tble, model, start = start_params(cens_data_tble,  : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100
  ID    model      AIC     par1      par2      par3       se1        se2
1 78 gengamma 362.7390 1.383439 0.7688265 0.1301997 0.1646852 0.06786955
2 79 gengamma 126.7605 1.506225 0.9226793 1.1529217 0.3780391 0.19033474
        se3
1 0.3652973
2 0.7429830
[1] ID    model AIC   par1  par2  par3  se1   se2   se3  
<0 rows> (or 0-length row.names)
[1] "187"

Still getting quite a few failure messages, but at least the thing runs now. Some of the error codes are “1,” which from the optim documentation indicates reaching maxit (which by default is 100). Others are error code “100” which I can’t track down.

Overall, note that the rep-specific model is better in most cases. There’s one case with a delta of zero, which might mean only one rep; and the last RIL didn’t return a value. So a bit more digging needed.

EDIT: increasing maxit to 1000 got the error code 1’s. The remainder seem to be ill-formed data: e.g., ID 77 only has values at 3 distances (so not enough df); and ID 40 has a spatially flat distribution of very low values. Note that for both these cases the 1 and 2 parameters dists fit just fine. The failure of fitall in RIL 187 is curious; if I add ID 80 back in (with 7 seeds) I do get a fit.

Strategically, I’m not going to be able to get a covariance matrix for the RIL with only one rep; and while cov will calculate a matrix with two reps, it will be an aweful estimate (because the correlations will all be \(\pm 1\)). So for RIL 133 I think I just take the mean of the rest of the RIL-specific covariance matrices.