15 min read

RIL dispersal kernels

I’m not entirely satisfied with the prior post on the RIL dispersal kernels. So let me re-run some things and see what we understand.

First, we need to make sure that we are getting enough iterates in the fit:

controls <- list(maxit = 1000)

We also clear out reps with not enough seeds (from 5/24/19):

n_min <- 10 # Set the minimum number of dispersing seeds
dispersing_seeds <- group_by(disperseRIL, ID) %>% 
  filter(Distance > 4) %>% 
  summarize(tot_seeds=sum(Seedlings))
good_reps <- filter(dispersing_seeds, tot_seeds >= n_min) %>%
  pull(ID)
disperseRILgood <- filter(disperseRIL, ID %in% good_reps)

So now fit all the reps.

RIL_list <- levels(disperseRILgood$RIL)
fiteach <- NULL 
for (i in RIL_list) {
  disperseRILi <- filter(disperseRILgood, RIL == i)
  fiteachi <- cbind(RIL = i, 
                    fiteach_disp_unt(disperseRILi,control=controls))
  fiteach <- rbind(fiteach, fiteachi)
}
<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start_params(cens_data_tble,  : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start_params(cens_data_tble,  : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobj, fix.arg = fix.arg, obs = data,     gr = gradient, ddistnam = ddistname, hessian = TRUE, method = meth,     lower = lower, upper = upper, ...): non-finite finite-difference value [2]>
Error in fitdist(cens_data_tble[, 2], model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
                with the error code 100

<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): non-finite finite-difference value [1]>
Error in fitdistcens(cens_data_tble, model, start = start_params(cens_data_tble,  : 
  the function mle failed to estimate the parameters, 
        with the error code 100
<simpleError in optim(par = vstart, fn = fnobjcens, fix.arg = fix.arg, gr = gradient,     rcens = rcens, lcens = lcens, icens = icens, ncens = ncens,     ddistnam = ddistname, pdistnam = pdistname, hessian = TRUE,     method = meth, lower = lower, upper = upper, ...): function cannot be evaluated at initial parameters>
Error in fitdistcens(cens_data_tble, model, start = start, ...) : 
  the function mle failed to estimate the parameters, 
        with the error code 100

Now lets calculate the delta-AIC within each dataset:

result <- group_by(fiteach, ID) %>% mutate(delta_AIC = AIC - min(AIC))
ggplot(result, aes(x=delta_AIC, group = model)) + geom_histogram() + 
  facet_wrap(~model, scales = "free") 
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Once again, we confirm that the generalized gamma is the only model that always has a low \(\Delta\)-AIC.

Let’s look at the fitted kernels:

fiteachgg <- filter(fiteach, model == "gengamma")
p <- ggplot(data = data.frame(x = c(0, 20)), mapping = aes(x = x)) 
for (i in 1:nrow(fiteachgg)) {
  pvec <- as.numeric(fiteachgg[i, 5:7])
  plist <- list(mu = pvec[1], sigma = pvec[2], Q= pvec[3])
  p <- p + stat_function(fun = dgengamma, args = plist, color = fiteachgg$RIL[i])
}
p + xlab("Distance (cm)") + ylab("Probability density")

There are a lot of strongly squared-off distributions, which reflect datsets that have nearly uniform distance distributions.

Let’s look at the scatter of parameters:

names(fiteachgg)[5:7] <- c("mu", "sigma", "Q")
library(GGally)
ggpairs(fiteachgg, aes(color = RIL), columns = 5:7)

It’s somewhat hard to see from this what the within-RIL patterns look like. Make plots by RIL:

for (i in RIL_list) {
  fegg <- filter(fiteachgg, RIL == i)
  print(ggpairs(fegg, columns = 5:7) + ggtitle(paste("RIL", i)))
}

Warning: Groups with fewer than two data points have been dropped.

Warning: Groups with fewer than two data points have been dropped.

Warning: Groups with fewer than two data points have been dropped.

The within-RIL patterns seem reasonable, except for the fact that occasional large values of \(Q\) seem like outliers.

Let’s see if there’s evidence that the parameters vary across RIL:

summary(aov(cbind(mu, sigma, Q) ~ RIL, data = fiteachgg))
 Response mu :
            Df Sum Sq Mean Sq F value  Pr(>F)  
RIL         13 3.6180 0.27830   2.076 0.03599 *
Residuals   44 5.8984 0.13406                  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

 Response sigma :
            Df  Sum Sq  Mean Sq F value Pr(>F)
RIL         13 0.97667 0.075128  1.1694 0.3324
Residuals   44 2.82676 0.064245               

 Response Q :
            Df Sum Sq Mean Sq F value Pr(>F)
RIL         13 268.63  20.664  1.0762 0.4031
Residuals   44 844.86  19.201               

It looks like there’s clear evidence for genotypic heterogeneity only in the mean dispersal distance, although there is a lot of non-normality in the other parameters. However, I don’t see an easy way to maintain the correlations when only having one of the parameters vary by RIL.

Continuing November 15

The last question involves checking that within-genotype heterogeneity exists by comparing AIC. First calculate summed AICs:

AIC_sums <- group_by(fiteachgg, RIL) %>%
  summarize(AIC_sum = sum(AIC))

And now calculate the AICs of the homogeneous models for each RIL:

RIL_list <- levels(disperseRILgood$RIL)
fitall <- NULL 
for (i in RIL_list) {
  disperseRILi <- filter(disperseRILgood, RIL == i)
  fitalli <- cbind(RIL = i, 
                    fit_dispersal_untruncated(disperseRILi,
                                              model = "gengamma",
                                              control=controls))
  fitall <- rbind(fitall, fitalli)
}

This fails for RIL 187. Also, this has me looking back, and realizing that a number of replicates are failing also. These are: 19 (RIL 22), 40 (RIL 53), 77 (RIL 187).

And finally, the Delta-AICs:

fitall
    RIL ID    model       AIC      par1      par2      par3         se1
1     3  2    hnorm 1511.9310 5.0388899        NA        NA 0.199209492
2     3  2      exp 1516.6611 0.2594586        NA        NA 0.014499437
3     3  2    lnorm 1505.2379 1.0276544 0.8514891        NA 0.048624634
4     3  2    gamma 1495.7228 1.5072419 0.3894532        NA 0.122773151
5     3  2  weibull 1498.3596 1.2415999 4.1520121        NA 0.056221877
6     3  2 invgauss 1508.6467 3.8869020 4.1370553        NA 0.210528093
7     3  2    logis 1634.2779 3.4155826 1.6533859        NA 0.158958051
8     3  2 invgamma 1541.9803 1.6991632 3.5043180        NA 0.134799747
9     3  2 gengamma 1496.9185 1.2839538 0.8321763 0.6453733 0.090725695
10   18  7    hnorm 2333.6060 6.6789297        NA        NA 0.224548260
11   18  7      exp 2355.7947 0.1922181        NA        NA 0.009136068
12   18  7    lnorm 2374.3679 1.3004987 0.9157878        NA 0.044198089
13   18  7    gamma 2332.6055 1.4266885 0.2735565        NA 0.096661627
14   18  7  weibull 2330.2654 1.2427466 5.5864781        NA 0.048678447
15   18  7 invgauss 2391.1772 5.2315842 4.6249246        NA 0.264340530
16   18  7    logis 2511.0077 4.6988302 2.2612716        NA 0.187144427
17   18  7 invgamma 2459.7309 1.4031563 3.5266794        NA 0.092275176
18   18  7 gengamma 2331.9320 1.7564780 0.7916559 1.0922657 0.073903876
19   22 11    hnorm 3733.2116 5.9938671        NA        NA 0.156058920
20   22 11      exp 3806.2926 0.2090507        NA        NA 0.007693484
21   22 11    lnorm 3850.5887 1.2327422 0.9071497        NA 0.033974359
22   22 11    gamma 3759.2482 1.4789190 0.3082259        NA 0.078783078
23   22 11  weibull 3747.2270 1.2956221 5.1781480        NA 0.040384322
24   22 11 invgauss 3877.5407 4.8155760 4.4300435        NA 0.184692991
25   22 11    logis 4004.9548 4.4442943 2.0254378        NA 0.131008951
26   22 11 invgamma 3999.9828 1.4188416 3.3525712        NA 0.072809866
27   22 11 gengamma 3737.0166 1.8118035 0.6938882 1.4708484 0.054394784
28   35 17    hnorm 1232.5902 4.9688465        NA        NA 0.216969870
29   35 17      exp 1248.8923 0.2569719        NA        NA 0.015858835
30   35 17    lnorm 1236.4992 1.0525098 0.8347940        NA 0.052562961
31   35 17    gamma 1226.2962 1.5978068 0.4087968        NA 0.142629779
32   35 17  weibull 1227.5179 1.2976015 4.2327076        NA 0.065431204
33   35 17 invgauss 1237.8219 3.9228724 4.3959124        NA 0.228760695
34   35 17    logis 1331.3071 3.5089799 1.6438121        NA 0.175949227
35   35 17 invgamma 1266.3845 1.7356859 3.6868791        NA 0.151135881
36   35 17 gengamma 1228.2540 1.3448097 0.7967839 0.7450910 0.101756463
37   42 23    hnorm 1650.3890 4.8603826        NA        NA 0.182535406
38   42 23      exp 1673.9162 0.2621699        NA        NA 0.013915069
39   42 23    lnorm 1676.2911 1.0311094 0.8533783        NA 0.046345635
40   42 23    gamma 1648.1848 1.5499922 0.4043940        NA 0.122193040
41   42 23  weibull 1646.7659 1.2902572 4.1384836        NA 0.056955699
42   42 23 invgauss 1684.5425 3.8513298 4.1314755        NA 0.197357137
43   42 23    logis 1771.5264 3.4738297 1.5782805        NA 0.144942641
44   42 23 invgamma 1731.7145 1.6504403 3.3871958        NA 0.125410463
45   42 23 gengamma 1648.7631 1.4239303 0.7738406 1.0097373 0.078255926
46   53 29    hnorm  429.7140 4.0109363        NA        NA 0.283664161
47   53 29      exp  445.7333 0.3033483        NA        NA 0.030299816
48   53 29    lnorm  408.9090 1.0108638 0.6220451        NA 0.063402770
49   53 29    gamma  411.5572 2.6410337 0.7951563        NA 0.380087899
50   53 29  weibull  418.3143 1.5895875 3.7137872        NA 0.118361188
51   53 29 invgauss  410.2606 3.3243375 7.1932315        NA 0.226660150
52   53 29    logis  435.4756 3.0231119 1.0915003        NA 0.186683643
53   53 29 invgamma  415.6794 2.9022171 6.6836030        NA 0.417864121
54   53 29 gengamma  410.5883 1.0575866 0.6246299 0.1559369 0.103877895
55   58 35    hnorm  531.7684 5.1431927        NA        NA 0.344724519
56   58 35      exp  538.9394 0.2479601        NA        NA 0.023489710
57   58 35    lnorm  521.5722 1.1197090 0.7666892        NA 0.073795836
58   58 35    gamma  523.7217 1.8160605 0.4483629        NA 0.242670008
59   58 35  weibull  526.8304 1.3516444 4.4329575        NA 0.100116673
60   58 35 invgauss  521.5568 4.0574941 5.4566599        NA 0.331633115
61   58 35    logis  570.7780 3.5570290 1.6435988        NA 0.267330913
62   58 35 invgamma  529.6351 2.0272887 4.8041333        NA 0.269249244
63   58 35 gengamma  523.0619 1.2033558 0.7695860 0.2284970 0.139012867
64  101 41    hnorm  846.3974 4.9148453        NA        NA 0.258495256
65  101 41      exp  870.6626 0.2506195        NA        NA 0.018625511
66  101 41    lnorm  834.2066 1.1427009 0.7285090        NA 0.054989649
67  101 41    gamma  832.3067 2.0695729 0.5162091        NA 0.217052829
68  101 41  weibull  836.2746 1.4763924 4.4441124        NA 0.086317452
69  101 41 invgauss  834.0688 4.0143890 6.1290169        NA 0.241726702
70  101 41    logis  893.0266 3.6632398 1.5441352        NA 0.200788748
71  101 41 invgamma  850.2491 2.1554531 5.3026654        NA 0.224804026
72  101 41 gengamma  833.2313 1.2971754 0.7166021 0.4397894 0.103525397
73  133 48    hnorm  227.3942 3.7444630        NA        NA 0.359146494
74  133 48      exp  240.4369 0.3123745        NA        NA 0.042291594
75  133 48    lnorm  238.3123 0.9508513 0.7369799        NA 0.102237162
76  133 48    gamma  230.5174 2.1818207 0.6752890        NA 0.449849244
77  133 48  weibull  227.1801 1.6919449 3.6041470        NA 0.203989299
78  133 48 invgauss  239.3137 3.2423931 5.0089310        NA 0.353784297
79  133 48    logis  235.6373 3.1896442 1.1317759        NA 0.274186003
80  133 48 invgamma  248.1875 2.0203038 4.0546765        NA 0.397839381
81  133 48 gengamma  223.4773 1.5966659 0.3879888 2.4837918 0.146482986
82  144 53    hnorm 1204.0331 5.3485299        NA        NA 0.239888389
83  144 53      exp 1213.5484 0.2415531        NA        NA 0.015314065
84  144 53    lnorm 1205.8245 1.1093938 0.8442704        NA 0.054544499
85  144 53    gamma 1193.9392 1.5698795 0.3776837        NA 0.144015345
86  144 53  weibull 1195.5957 1.2763988 4.4862028        NA 0.065181301
87  144 53 invgauss 1210.8620 4.1714023 4.5078361        NA 0.254381227
88  144 53    logis 1288.6114 3.7093417 1.7141996        NA 0.186523083
89  144 53 invgamma 1240.7865 1.6737447 3.7196990        NA 0.149682377
90  144 53 gengamma 1195.8324 1.3986804 0.8058457 0.7337897 0.094695262
91  147 59    hnorm  646.0046 5.2482816        NA        NA 0.320365329
92  147 59      exp  664.7475 0.2340221        NA        NA 0.020187036
93  147 59    lnorm  654.1668 1.2015062 0.7694050        NA 0.067379380
94  147 59    gamma  642.8273 1.9386609 0.4514709        NA 0.241916272
95  147 59  weibull  642.5806 1.4569785 4.7361525        NA 0.100909016
96  147 59 invgauss  659.1130 4.3046261 5.7683683        NA 0.320994354
97  147 59    logis  675.1196 3.9445190 1.5880402        NA 0.236002298
98  147 59 invgamma  678.5389 1.8621007 4.6784011        NA 0.226884768
99  147 59 gengamma  644.3591 1.5160773 0.6968445 0.8841672 0.104655976
100 148 66    hnorm  229.8761 5.1881238        NA        NA 0.531149625
101 148 66      exp  234.2882 0.2423849        NA        NA 0.035070346
102 148 66    lnorm  237.2551 1.0745790 0.9050554        NA 0.133702590
103 148 66    gamma  233.3937 1.4492002 0.3500727        NA 0.302127832
104 148 66  weibull  232.8347 1.2754371 4.4581887        NA 0.158123287
105 148 66 invgauss  236.9562 4.1548651 3.9100832        NA 0.619413502
106 148 66    logis  252.2158 3.8868109 1.8353380        NA 0.473632006
107 148 66 invgamma  243.2677 1.5028643 3.0994517        NA 0.302706843
108 148 66 gengamma  233.3121 1.8416956 0.5849284 2.0543650 0.243003310
109 180 73    hnorm  377.5094 4.9059108        NA        NA 0.386776470
110 180 73      exp  385.8780 0.2548929        NA        NA 0.028397729
111 180 73    lnorm  369.3690 1.1261760 0.7186963        NA 0.081338494
112 180 73    gamma  370.4325 2.0546154 0.5211240        NA 0.324408632
113 180 73  weibull  373.3110 1.4368411 4.3582895        NA 0.123713158
114 180 73 invgauss  370.0386 3.9481418 6.1598001        NA 0.352533002
115 180 73    logis  399.3398 3.4943001 1.4964986        NA 0.285621350
116 180 73 invgamma  376.0510 2.2369659 5.4692145        NA 0.351941770
117 180 73 gengamma  370.7943 1.2168384 0.7196190 0.2632830 0.144647536
118 187 77    hnorm  600.1028 5.6076359        NA        NA 0.359938804
119 187 77      exp  586.6146 0.2482301        NA        NA 0.022531076
120 187 77    lnorm  589.2781 0.9824097 0.9589539        NA 0.089440131
121 187 77    gamma  587.2087 1.1751535 0.2911932        NA 0.156702651
122 187 77  weibull  587.6610 1.0773545 4.1536274        NA 0.080505764
123 187 77 invgauss  590.1878 4.0628152 3.2396337        NA 0.412823524
124 187 77    logis  659.6549 3.4423852 1.9167085        NA 0.297914168
125 187 77 invgamma  602.0482 1.4511312 2.7233176        NA 0.187413487
           se2       se3
1           NA        NA
2           NA        NA
3   0.03787923        NA
4   0.03605905        NA
5   0.19893631        NA
6   0.37446416        NA
7   0.07905673        NA
8   0.34265431        NA
9   0.03915315 0.1931778
10          NA        NA
11          NA        NA
12  0.03415210        NA
13  0.02138685        NA
14  0.22645156        NA
15  0.34965191        NA
16  0.09039535        NA
17  0.29397773        NA
18  0.03863082 0.1600487
19          NA        NA
20          NA        NA
21  0.02647815        NA
22  0.01877326        NA
23  0.15582283        NA
24  0.26245562        NA
25  0.06195241        NA
26  0.21875564        NA
27  0.03141013 0.1413330
28          NA        NA
29          NA        NA
30  0.04056515        NA
31  0.04129192        NA
32  0.21414235        NA
33  0.43461236        NA
34  0.08598265        NA
35  0.39271573        NA
36  0.04476098 0.2259475
37          NA        NA
38          NA        NA
39  0.03661533        NA
40  0.03594411        NA
41  0.18103817        NA
42  0.36051209        NA
43  0.07100910        NA
44  0.32041292        NA
45  0.03912709 0.1752844
46          NA        NA
47          NA        NA
48  0.04758629        NA
49  0.12363068        NA
50  0.24889581        NA
51  1.11826075        NA
52  0.09449311        NA
53  1.08788976        NA
54  0.04764835 0.2741321
55          NA        NA
56          NA        NA
57  0.05552359        NA
58  0.06730990        NA
59  0.33063498        NA
60  0.80278721        NA
61  0.13425474        NA
62  0.75327986        NA
63  0.05545398 0.3195632
64          NA        NA
65          NA        NA
66  0.04114385        NA
67  0.06002106        NA
68  0.23781343        NA
69  0.70368055        NA
70  0.09659667        NA
71  0.64671380        NA
72  0.04247629 0.2507150
73          NA        NA
74          NA        NA
75  0.08070351        NA
76  0.15098109        NA
77  0.30628742        NA
78  1.11658392        NA
79  0.12652023        NA
80  0.96008649        NA
81  0.10160358 0.8935616
82          NA        NA
83          NA        NA
84  0.04226313        NA
85  0.03930260        NA
86  0.23683991        NA
87  0.45837812        NA
88  0.09260701        NA
89  0.40933298        NA
90  0.04381884 0.2015349
91          NA        NA
92          NA        NA
93  0.05172700        NA
94  0.06254573        NA
95  0.29741663        NA
96  0.78611460        NA
97  0.11680141        NA
98  0.68359058        NA
99  0.05308470 0.2459879
100         NA        NA
101         NA        NA
102 0.10334502        NA
103 0.08364166        NA
104 0.53729192        NA
105 0.90926721        NA
106 0.21665714        NA
107 0.78619453        NA
108 0.15725998 0.8707995
109         NA        NA
110         NA        NA
111 0.06110918        NA
112 0.09119871        NA
113 0.35962614        NA
114 1.06339788        NA
115 0.14484199        NA
116 1.00102367        NA
117 0.06086707 0.3455521
118         NA        NA
119         NA        NA
120 0.07103567        NA
121 0.04546050        NA
122 0.37335151        NA
123 0.48932825        NA
124 0.14881017        NA
125 0.45250513        NA
fitall$AIC - AIC_sums$AIC_sum
Warning in fitall$AIC - AIC_sums$AIC_sum: longer object length is not a
multiple of shorter object length
  [1]    26.102510  -787.210018 -2188.243463   374.245551  -126.753103
  [6]  1112.943299  1209.835815   703.683879  1273.441164  1152.147602
 [11]  1706.944326  2134.731899  2004.630143  1840.765835   905.348663
 [16]   207.136587 -1233.750518  1210.454729  2108.098905  3410.589206
 [21]  3426.146583  2920.951772  3523.749602  2696.082287  3356.104465
 [26]  3760.346761  3409.041274   743.090650  -236.936186 -1067.371900
 [31] -2467.185177   106.040674  -387.290793   935.603740   841.942454
 [36]   389.957497  1426.911669   492.457737  1027.440708  1408.548776
 [41]  1318.790626  1195.042931   285.697927  -572.156630 -2044.718325
 [46]  -691.763283 -1179.379462    13.205586   -12.884900  -419.982174
 [51]   186.783207  -745.982818  -233.170912   170.952300   203.793054
 [56]    49.439864  -964.256335 -1780.149417 -3166.650972  -599.920459
 [61] -1054.334691   133.931676    98.619804     8.100961   647.185270
 [66]  -347.251799   183.456348   596.638601   506.093495   403.527047
 [71]  -635.579387 -1470.639872 -3466.087189  -881.040389 -1386.800474
 [76]  -165.185991  -197.262025  -598.982814    12.160000  -933.270869
 [81]  -425.373010   964.397015   885.573120   716.325003  -291.889275
 [86] -1108.275454 -2482.619401   167.134149  -384.326188   800.129017
 [91]   221.562533  -173.548970   430.689459  -538.631067    -6.269723
 [96]   419.476925   347.144292   189.039357  -841.469386 -2073.995021
[101] -3459.193154  -884.222130 -1391.719044  -162.868690  -187.485860
[106]  -586.080620    19.790374  -948.146335  -271.340935   146.241921
[111]    41.393658  -119.067049 -1112.517524 -1933.832532 -3294.141575
[116]  -745.426225 -1254.318462   204.399456   162.172516  -249.018412
[121]   363.731397  -593.797453   -58.662595   420.018877   274.072874