18 5 June 2017

18.1 More on stochasticity in Ler seed production

Some observations on stochasticity in Ler seed production:

  1. Seed number is uncorrelated with silique number, so the latter is not a useful measure
  2. Variability in seed production is hierarchically structured:
    1. Among generations (reflecting, perhaps, season or other greenhouse-wide effects)
    2. Among runways within a generation (reflecting, perhaps, spatial variation in greenhouse conditions; this is the best we can do without a map of runway locations)
    3. Among pots within a runway (this remains to be parsed between differences among pots and differences among individuals)

Some things that I still need to do:

  1. Re-analyze treatment B using log(seedling number) as the response variable
  2. Re-run the DD model using random effects for generation and rep within generation
  3. Regress residuals on \(1/N\); the intercept should give the amount of the among-pot variation that is due to “environmental stochasticity.” However, maybe this should be residuals from a model of \(\lambda\) rather than \(\log \lambda\)?

Let’s start by just adding treatment B into the density dependence analysis. In order to get a good sample size we’ll use both landscapes 1p and 2p.

seed_data <- group_by(popLer, ID, Pot) %>%
  mutate(Nm1 = 1 + (Treatment == "C") * (lag(Seedlings) - 1))
#seed_data$Nm1 <- lag(popLer$Seedlings)
seed_data <- subset(seed_data, 
                    Treatment %in% c("B", "C") & Generation > 1 & Gap %in% c("1p", "2p"))
seed_data$GenID <- with(seed_data, interaction(Gen, ID))
seed_data$Nm1[is.na(seed_data$Nm1)] <- 1
seed_data$ID <- as.factor(seed_data$ID) 
DD.lm <- lm(log(Seedlings/Nm1) ~ log(Nm1) + Gen * ID, data = seed_data) 
anova(DD.lm)
Analysis of Variance Table

Response: log(Seedlings/Nm1)
           Df  Sum Sq Mean Sq  F value    Pr(>F)    
log(Nm1)    1 1197.23 1197.23 792.6968 < 2.2e-16 ***
Gen         4   85.65   21.41  14.1779 9.618e-11 ***
ID         39   56.53    1.45   0.9597    0.5426    
Gen:ID    156  196.33    1.26   0.8333    0.9043    
Residuals 354  534.66    1.51                       
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(DD.lm)

Call:
lm(formula = log(Seedlings/Nm1) ~ log(Nm1) + Gen * ID, data = seed_data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4725 -0.4679  0.0000  0.6050  2.6645 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.78599    0.87309   2.046   0.0415 *  
log(Nm1)    -0.43660    0.03108 -14.049   <2e-16 ***
Gen3         1.30529    1.22910   1.062   0.2890    
Gen4         1.20304    1.12203   1.072   0.2844    
Gen5         0.15684    1.12384   0.140   0.8891    
Gen6         0.65412    1.06459   0.614   0.5393    
ID2          0.89140    1.50799   0.591   0.5548    
ID3          2.43909    1.50644   1.619   0.1063    
ID8          0.82874    1.12189   0.739   0.4606    
ID10         1.07306    1.22904   0.873   0.3832    
ID12         1.55370    1.06446   1.460   0.1453    
ID14         0.70985    1.22899   0.578   0.5639    
ID16        -0.03284    1.22898  -0.027   0.9787    
ID20         1.17331    1.12207   1.046   0.2964    
ID24         2.58161    1.50694   1.713   0.0876 .  
ID30         1.49876    1.50685   0.995   0.3206    
ID37         0.94599    1.22899   0.770   0.4420    
ID43         0.91479    1.02872   0.889   0.3745    
ID45         1.42381    1.50777   0.944   0.3457    
ID58         0.81804    1.12246   0.729   0.4666    
ID64         0.37098    1.22907   0.302   0.7630    
ID65         1.12223    1.50696   0.745   0.4569    
ID68         0.77756    1.12198   0.693   0.4887    
ID69         0.78757    1.22896   0.641   0.5220    
ID72         1.00936    1.06444   0.948   0.3436    
ID73         1.50985    1.50752   1.002   0.3172    
ID74         2.16526    1.50752   1.436   0.1518    
ID75         2.02068    1.50752   1.340   0.1810    
ID78         3.28919    1.50752   2.182   0.0298 *  
ID80         3.00980    1.50752   1.997   0.0466 *  
ID83         0.12833    1.23185   0.104   0.9171    
ID85         0.63815    1.12505   0.567   0.5709    
ID87         0.61191    1.50752   0.406   0.6851    
ID89         2.78873    1.50752   1.850   0.0652 .  
ID90         1.55632    1.23185   1.263   0.2073    
ID92         0.85246    1.12505   0.758   0.4491    
ID97         0.73894    1.23185   0.600   0.5490    
ID98         1.46316    1.23185   1.188   0.2357    
ID100       -0.03773    1.23185  -0.031   0.9756    
ID101       -0.90630    1.12505  -0.806   0.4210    
ID104        2.90279    1.23185   2.356   0.0190 *  
ID105        2.88684    1.50752   1.915   0.0563 .  
ID106        0.08285    1.23185   0.067   0.9464    
ID110        1.10439    1.50752   0.733   0.4643    
ID112        0.46555    1.12505   0.414   0.6793    
Gen3:ID2    -2.16031    1.94593  -1.110   0.2677    
Gen4:ID2    -1.65507    1.81315  -0.913   0.3620    
Gen5:ID2    -0.43102    1.78112  -0.242   0.8089    
Gen6:ID2    -1.32984    1.73986  -0.764   0.4452    
Gen3:ID3    -3.38632    1.94402  -1.742   0.0824 .  
Gen4:ID3    -1.98500    1.81076  -1.096   0.2737    
Gen5:ID3    -1.38528    1.77649  -0.780   0.4360    
Gen6:ID3    -2.98502    1.73805  -1.717   0.0868 .  
Gen3:ID8    -1.33328    1.58682  -0.840   0.4013    
Gen4:ID8    -1.11609    1.50610  -0.741   0.4592    
Gen5:ID8     0.74749    1.50533   0.497   0.6198    
Gen6:ID8    -2.72659    1.46619  -1.860   0.0638 .  
Gen3:ID10   -1.07110    1.73845  -0.616   0.5382    
Gen4:ID10   -1.78773    1.58675  -1.127   0.2606    
Gen5:ID10    1.28495    1.58657   0.810   0.4185    
Gen6:ID10   -1.29988    1.55062  -0.838   0.4024    
Gen3:ID12   -1.21135    1.50620  -0.804   0.4218    
Gen4:ID12   -1.90996    1.39370  -1.370   0.1714    
Gen5:ID12   -0.50411    1.37402  -0.367   0.7139    
Gen6:ID12   -2.52657    1.32983  -1.900   0.0583 .  
Gen3:ID14   -0.70204    1.73810  -0.404   0.6865    
Gen4:ID14   -0.07674    1.54663  -0.050   0.9605    
Gen5:ID14    0.50740    1.54640   0.328   0.7430    
Gen6:ID14   -1.09967    1.48022  -0.743   0.4580    
Gen3:ID16    0.74469    1.73801   0.428   0.6686    
Gen4:ID16   -0.28106    1.54655  -0.182   0.8559    
Gen5:ID16    1.21610    1.54660   0.786   0.4322    
Gen6:ID16    0.22965    1.50619   0.152   0.8789    
Gen3:ID20   -0.97470    1.54646  -0.630   0.5289    
Gen4:ID20   -1.13200    1.46463  -0.773   0.4401    
Gen5:ID20    0.36067    1.41910   0.254   0.7995    
Gen6:ID20   -1.78062    1.36232  -1.307   0.1920    
Gen3:ID24   -2.53815    2.12916  -1.192   0.2340    
Gen4:ID24   -3.53938    2.06919  -1.711   0.0880 .  
Gen5:ID24   -3.06753    1.88171  -1.630   0.1040    
Gen6:ID24   -1.83600    1.84533  -0.995   0.3204    
Gen3:ID30   -1.77556    2.12867  -0.834   0.4048    
Gen4:ID30   -3.66532    1.87884  -1.951   0.0519 .  
Gen5:ID30    0.13060    1.88262   0.069   0.9447    
Gen6:ID30   -0.96734    1.84359  -0.525   0.6001    
Gen3:ID37   -2.06866    1.73832  -1.190   0.2348    
Gen4:ID37   -0.97963    1.58658  -0.617   0.5373    
Gen5:ID37    0.30129    1.54681   0.195   0.8457    
Gen6:ID37   -1.37315    1.48010  -0.928   0.3542    
Gen3:ID43   -0.44298    1.45474  -0.305   0.7609    
Gen4:ID43   -0.70395    1.36878  -0.514   0.6074    
Gen5:ID43    0.30094    1.36712   0.220   0.8259    
Gen6:ID43   -2.30305    1.32457  -1.739   0.0830 .  
Gen3:ID45   -2.05370    1.88148  -1.092   0.2758    
Gen4:ID45   -0.45029    1.81065  -0.249   0.8037    
Gen5:ID45   -1.26464    1.77661  -0.712   0.4770    
Gen6:ID45   -2.32672    1.71811  -1.354   0.1765    
Gen3:ID58    0.12857    1.58711   0.081   0.9355    
Gen4:ID58   -0.88546    1.50992  -0.586   0.5580    
Gen5:ID58    0.49525    1.50735   0.329   0.7427    
Gen6:ID58   -1.54672    1.46931  -1.053   0.2932    
Gen3:ID64   -0.63984    1.66409  -0.385   0.7008    
Gen4:ID64   -0.58730    1.58711  -0.370   0.7116    
Gen5:ID64    1.15752    1.52230   0.760   0.4475    
Gen6:ID64   -0.78092    1.48146  -0.527   0.5984    
Gen3:ID65   -0.57220    2.12861  -0.269   0.7882    
Gen4:ID65   -1.71717    2.06898  -0.830   0.4071    
Gen5:ID65   -0.15346    2.06885  -0.074   0.9409    
Gen6:ID65   -1.07533    2.03807  -0.528   0.5981    
Gen3:ID68   -1.29369    1.58687  -0.815   0.4155    
Gen4:ID68   -0.91634    1.50632  -0.608   0.5434    
Gen5:ID68    0.01161    1.46276   0.008   0.9937    
Gen6:ID68   -1.04929    1.42049  -0.739   0.4606    
Gen3:ID69   -0.42327    1.66409  -0.254   0.7994    
Gen4:ID69   -1.54499    1.58753  -0.973   0.3311    
Gen5:ID69    1.04075    1.54669   0.673   0.5015    
Gen6:ID69   -1.03891    1.48042  -0.702   0.4833    
Gen3:ID72   -1.00478    1.46275  -0.687   0.4926    
Gen4:ID72   -1.22906    1.37521  -0.894   0.3721    
Gen5:ID72   -0.46668    1.36089  -0.343   0.7319    
Gen6:ID72   -2.07704    1.31545  -1.579   0.1152    
Gen3:ID73   -0.64989    2.12869  -0.305   0.7603    
Gen4:ID73   -1.60851    2.06872  -0.778   0.4374    
Gen5:ID73    2.13831    2.06970   1.033   0.3022    
Gen6:ID73   -1.03255    1.84359  -0.560   0.5758    
Gen3:ID74   -1.88924    2.12869  -0.888   0.3754    
Gen4:ID74   -1.28657    1.87735  -0.685   0.4936    
Gen5:ID74    0.39603    1.87843   0.211   0.8331    
Gen6:ID74   -1.88424    1.77401  -1.062   0.2889    
Gen3:ID75   -0.75525    2.12869  -0.355   0.7230    
Gen4:ID75   -0.67897    2.06872  -0.328   0.7429    
Gen5:ID75   -0.96777    2.06970  -0.468   0.6404    
Gen6:ID75   -2.32245    1.84359  -1.260   0.2086    
Gen3:ID78   -3.54725    2.12869  -1.666   0.0965 .  
Gen4:ID78   -3.88032    2.06872  -1.876   0.0615 .  
Gen5:ID78   -3.18899    1.81019  -1.762   0.0790 .  
Gen6:ID78   -2.15341    1.77401  -1.214   0.2256    
Gen3:ID80   -3.85118    1.94324  -1.982   0.0483 *  
Gen4:ID80   -1.92144    1.87735  -1.023   0.3068    
Gen5:ID80   -1.06104    1.81019  -0.586   0.5581    
Gen6:ID80   -1.60978    1.77401  -0.907   0.3648    
Gen3:ID83    0.66062    1.73810   0.380   0.7041    
Gen4:ID83    1.41472    1.66411   0.850   0.3958    
Gen5:ID83    1.00308    1.66533   0.602   0.5473    
Gen6:ID83   -0.16410    1.54659  -0.106   0.9156    
Gen3:ID85   -0.03199    1.58668  -0.020   0.9839    
Gen4:ID85    0.56258    1.50527   0.374   0.7088    
Gen5:ID85    0.33365    1.50662   0.221   0.8249    
Gen6:ID85   -0.01573    1.46295  -0.011   0.9914    
Gen3:ID87    0.01038    2.12869   0.005   0.9961    
Gen4:ID87   -0.65650    2.06872  -0.317   0.7512    
Gen5:ID87   -0.53321    1.87843  -0.284   0.7767    
Gen6:ID87   -1.26026    1.84359  -0.684   0.4947    
Gen3:ID89   -2.02986    2.12869  -0.954   0.3410    
Gen4:ID89   -1.92760    2.06872  -0.932   0.3521    
Gen5:ID89   -1.78711    2.06970  -0.863   0.3885    
Gen6:ID89   -2.18431    2.03814  -1.072   0.2846    
Gen3:ID90   -1.08191    1.66412  -0.650   0.5160    
Gen4:ID90   -1.99026    1.54651  -1.287   0.1990    
Gen5:ID90    0.58267    1.52323   0.383   0.7023    
Gen6:ID90   -1.52391    1.46295  -1.042   0.2983    
Gen3:ID92   -0.59698    1.58668  -0.376   0.7070    
Gen4:ID92   -0.41567    1.50527  -0.276   0.7826    
Gen5:ID92    2.20921    1.46425   1.509   0.1323    
Gen6:ID92   -0.78100    1.39243  -0.561   0.5752    
Gen3:ID97   -0.52622    1.73810  -0.303   0.7623    
Gen4:ID97    0.43335    1.66411   0.260   0.7947    
Gen5:ID97    0.94320    1.66533   0.566   0.5715    
Gen6:ID97    0.27881    1.62594   0.171   0.8639    
Gen3:ID98   -0.90303    1.66412  -0.543   0.5877    
Gen4:ID98   -1.95525    1.54651  -1.264   0.2070    
Gen5:ID98   -1.10618    1.54782  -0.715   0.4753    
Gen6:ID98   -1.95746    1.50536  -1.300   0.1943    
Gen3:ID100   0.84551    1.73810   0.486   0.6269    
Gen4:ID100   0.64140    1.66411   0.385   0.7002    
Gen5:ID100   1.58727    1.66533   0.953   0.3412    
Gen6:ID100   0.69073    1.62594   0.425   0.6712    
Gen3:ID101   1.86031    1.58668   1.172   0.2418    
Gen4:ID101   1.93286    1.50527   1.284   0.2000    
Gen5:ID101   2.29557    1.50662   1.524   0.1285    
Gen6:ID101   1.82846    1.46295   1.250   0.2122    
Gen3:ID104  -1.85765    1.73810  -1.069   0.2859    
Gen4:ID104  -3.17278    1.66411  -1.907   0.0574 .  
Gen5:ID104  -1.99215    1.54782  -1.287   0.1989    
Gen6:ID104  -2.98978    1.50536  -1.986   0.0478 *  
Gen3:ID105  -1.02229    2.12869  -0.480   0.6313    
Gen4:ID105  -2.09168    2.06872  -1.011   0.3127    
Gen5:ID105  -0.34103    2.06970  -0.165   0.8692    
Gen6:ID105  -0.98315    2.03814  -0.482   0.6298    
Gen3:ID106  -0.41737    1.66412  -0.251   0.8021    
Gen4:ID106   0.54158    1.58668   0.341   0.7331    
Gen5:ID106   1.44681    1.54782   0.935   0.3506    
Gen6:ID106  -0.34875    1.50536  -0.232   0.8169    
Gen3:ID110  -0.66930    2.12869  -0.314   0.7534    
Gen4:ID110  -0.61371    1.87735  -0.327   0.7439    
Gen5:ID110   0.68361    1.87843   0.364   0.7161    
Gen6:ID110  -0.87094    1.84359  -0.472   0.6369    
Gen3:ID112  -0.09026    1.58668  -0.057   0.9547    
Gen4:ID112  -0.06853    1.50527  -0.046   0.9637    
Gen5:ID112   1.11058    1.46425   0.758   0.4487    
Gen6:ID112  -0.39053    1.41929  -0.275   0.7834    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.229 on 354 degrees of freedom
Multiple R-squared:  0.7418,    Adjusted R-squared:  0.5959 
F-statistic: 5.084 on 200 and 354 DF,  p-value: < 2.2e-16
ggplot(aes(log(Nm1), log(Seedlings/Nm1), group = GenID, color = Gen), data = seed_data) +
  geom_point() + geom_smooth(method = "lm", se = FALSE)

All right, now let’s try with glm and quasi-poisson:

DD.glm <- glm(Seedlings ~ log(Nm1) + Gen * ID, data = seed_data, family = quasipoisson) 
car::Anova(DD.glm) 
Analysis of Deviance Table (Type II tests)

Response: Seedlings
         LR Chisq  Df Pr(>Chisq)    
log(Nm1)   431.29   1  < 2.2e-16 ***
Gen        192.69   4  < 2.2e-16 ***
ID          78.50  39  0.0001811 ***
Gen:ID     223.80 156  0.0003043 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(DD.glm)

Call:
glm(formula = Seedlings ~ log(Nm1) + Gen * ID, family = quasipoisson, 
    data = seed_data)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-25.346   -5.058    0.000    2.938   31.110  

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.043179   0.451232   8.960  < 2e-16 ***
log(Nm1)     0.320337   0.017984  17.812  < 2e-16 ***
Gen3         0.508582   0.544455   0.934 0.350883    
Gen4         0.553890   0.509055   1.088 0.277302    
Gen5        -0.190163   0.539657  -0.352 0.724765    
Gen6        -0.182980   0.540954  -0.338 0.735373    
ID2          0.017309   0.637472   0.027 0.978353    
ID3          1.328772   0.523153   2.540 0.011514 *  
ID8          0.247817   0.550162   0.450 0.652666    
ID10         0.114426   0.648556   0.176 0.860056    
ID12         0.318970   0.538649   0.592 0.554118    
ID14        -0.098951   0.618344  -0.160 0.872953    
ID16         0.072229   0.597492   0.121 0.903850    
ID20        -0.183721   0.628544  -0.292 0.770231    
ID24         1.557990   0.501370   3.107 0.002040 ** 
ID30         0.461067   0.602790   0.765 0.444848    
ID37         0.350891   0.598379   0.586 0.557979    
ID43         0.396803   0.528499   0.751 0.453265    
ID45         0.520991   0.573021   0.909 0.363863    
ID58         0.065428   0.623718   0.105 0.916514    
ID64         0.419852   0.607499   0.691 0.489946    
ID65         0.101626   0.655837   0.155 0.876944    
ID68        -0.108707   0.616558  -0.176 0.860150    
ID69        -0.160725   0.664430  -0.242 0.808998    
ID72         0.275853   0.537597   0.513 0.608186    
ID73        -0.747343   1.728171  -0.432 0.665680    
ID74        -0.091936   1.283982  -0.072 0.942959    
ID75        -0.236517   1.368718  -0.173 0.862906    
ID78         1.031994   0.820509   1.258 0.209312    
ID80         0.752611   0.908076   0.829 0.407778    
ID83        -1.517451   1.791424  -0.847 0.397532    
ID85        -0.251443   0.876600  -0.287 0.774404    
ID87        -1.645284   2.652267  -0.620 0.535439    
ID89         0.531531   0.989065   0.537 0.591323    
ID90         0.369619   0.811782   0.455 0.649160    
ID92        -0.379618   0.919689  -0.413 0.680027    
ID97        -0.728993   1.252908  -0.582 0.561044    
ID98        -0.225467   1.014555  -0.222 0.824261    
ID100       -2.097269   2.360245  -0.889 0.374832    
ID101       -2.369203   2.213498  -1.070 0.285194    
ID104        0.812749   0.704261   1.154 0.249260    
ID105        0.629649   0.951763   0.662 0.508683    
ID106       -0.975127   1.396775  -0.698 0.485556    
ID110       -1.152808   2.092381  -0.551 0.582012    
ID112       -1.014657   1.189767  -0.853 0.394335    
Gen3:ID2    -0.725818   0.847518  -0.856 0.392353    
Gen4:ID2     0.188788   0.733663   0.257 0.797080    
Gen5:ID2     0.048529   0.777082   0.062 0.950240    
Gen6:ID2    -0.418015   0.800906  -0.522 0.602047    
Gen3:ID3    -1.626290   0.692556  -2.348 0.019412 *  
Gen4:ID3    -1.126329   0.626939  -1.797 0.073259 .  
Gen5:ID3    -0.842500   0.648192  -1.300 0.194526    
Gen6:ID3    -1.350227   0.662340  -2.039 0.042236 *  
Gen3:ID8    -0.366896   0.682695  -0.537 0.591314    
Gen4:ID8    -0.934527   0.673860  -1.387 0.166367    
Gen5:ID8     0.763515   0.655545   1.165 0.244923    
Gen6:ID8    -1.804249   0.837205  -2.155 0.031829 *  
Gen3:ID10   -0.419608   0.803372  -0.522 0.601782    
Gen4:ID10   -0.094649   0.735702  -0.129 0.897706    
Gen5:ID10    1.060966   0.737561   1.438 0.151182    
Gen6:ID10    0.020512   0.755992   0.027 0.978369    
Gen3:ID12   -0.378844   0.658266  -0.576 0.565307    
Gen4:ID12   -0.958024   0.635016  -1.509 0.132277    
Gen5:ID12    0.357942   0.641027   0.558 0.576933    
Gen6:ID12   -1.262101   0.701813  -1.798 0.072974 .  
Gen3:ID14    0.121812   0.754102   0.162 0.871766    
Gen4:ID14   -0.512795   0.736078  -0.697 0.486474    
Gen5:ID14    0.780078   0.717626   1.087 0.277765    
Gen6:ID14   -0.045252   0.735141  -0.062 0.950952    
Gen3:ID16   -0.061494   0.741496  -0.083 0.933952    
Gen4:ID16   -1.202151   0.759309  -1.583 0.114265    
Gen5:ID16    0.342530   0.717455   0.477 0.633355    
Gen6:ID16    0.100265   0.712884   0.141 0.888229    
Gen3:ID20   -0.151832   0.760273  -0.200 0.841824    
Gen4:ID20    0.257355   0.700666   0.367 0.713614    
Gen5:ID20    1.222094   0.712657   1.715 0.087249 .  
Gen6:ID20    0.079012   0.729305   0.108 0.913788    
Gen3:ID24   -1.218430   0.638428  -1.908 0.057137 .  
Gen4:ID24   -2.372220   0.695935  -3.409 0.000728 ***
Gen5:ID24   -1.147753   0.690829  -1.661 0.097516 .  
Gen6:ID24   -1.393997   0.709023  -1.966 0.050070 .  
Gen3:ID30   -0.712891   0.779117  -0.915 0.360815    
Gen4:ID30   -2.012935   0.922025  -2.183 0.029680 *  
Gen5:ID30    0.041165   0.783026   0.053 0.958103    
Gen6:ID30   -0.181481   0.756519  -0.240 0.810554    
Gen3:ID37   -1.148642   0.807422  -1.423 0.155732    
Gen4:ID37   -0.211171   0.697251  -0.303 0.762172    
Gen5:ID37    0.222909   0.709411   0.314 0.753541    
Gen6:ID37   -0.468397   0.726377  -0.645 0.519449    
Gen3:ID43   -0.394548   0.645279  -0.611 0.541301    
Gen4:ID43   -0.235858   0.602237  -0.392 0.695563    
Gen5:ID43    0.460569   0.625507   0.736 0.462028    
Gen6:ID43   -1.422365   0.692022  -2.055 0.040576 *  
Gen3:ID45   -1.286955   0.777725  -1.655 0.098857 .  
Gen4:ID45   -0.415576   0.672081  -0.618 0.536748    
Gen5:ID45   -0.282137   0.693140  -0.407 0.684223    
Gen6:ID45   -1.031474   0.734838  -1.404 0.161292    
Gen3:ID58    0.312379   0.732627   0.426 0.670088    
Gen4:ID58   -0.298223   0.705544  -0.423 0.672782    
Gen5:ID58    0.897457   0.714474   1.256 0.209905    
Gen6:ID58   -0.269180   0.748447  -0.360 0.719322    
Gen3:ID64   -0.025388   0.725404  -0.035 0.972101    
Gen4:ID64   -1.448796   0.752154  -1.926 0.054880 .  
Gen5:ID64   -0.005864   0.723116  -0.008 0.993534    
Gen6:ID64   -0.960080   0.750582  -1.279 0.201695    
Gen3:ID65    0.391479   0.778362   0.503 0.615310    
Gen4:ID65   -0.628793   0.796096  -0.790 0.430147    
Gen5:ID65    0.483003   0.801865   0.602 0.547327    
Gen6:ID65    0.092653   0.831419   0.111 0.911331    
Gen3:ID68   -0.650878   0.787310  -0.827 0.408957    
Gen4:ID68   -0.517148   0.735852  -0.703 0.482650    
Gen5:ID68    0.511472   0.728950   0.702 0.483355    
Gen6:ID68   -0.089564   0.748860  -0.120 0.904867    
Gen3:ID69    0.678626   0.769246   0.882 0.378269    
Gen4:ID69   -1.151739   0.812405  -1.418 0.157161    
Gen5:ID69    0.913132   0.763121   1.197 0.232273    
Gen6:ID69    0.041416   0.775749   0.053 0.957452    
Gen3:ID72   -0.107015   0.650276  -0.165 0.869378    
Gen4:ID72   -1.128138   0.636728  -1.772 0.077292 .  
Gen5:ID72    0.059203   0.644784   0.092 0.926895    
Gen6:ID72   -1.197553   0.694305  -1.725 0.085432 .  
Gen3:ID73    0.146825   2.127063   0.069 0.945007    
Gen4:ID73   -0.959355   2.686363  -0.357 0.721214    
Gen5:ID73    2.485313   1.831548   1.357 0.175663    
Gen6:ID73    1.347287   1.873472   0.719 0.472530    
Gen3:ID74   -1.092530   2.081458  -0.525 0.599990    
Gen4:ID74   -0.462082   1.537290  -0.301 0.763909    
Gen5:ID74    0.744269   1.466755   0.507 0.612172    
Gen6:ID74   -0.412529   1.615968  -0.255 0.798653    
Gen3:ID75    0.041464   1.711591   0.024 0.980686    
Gen4:ID75   -0.029819   1.708098  -0.017 0.986081    
Gen5:ID75   -0.620767   2.391236  -0.260 0.795322    
Gen6:ID75   -1.225788   2.319023  -0.529 0.597428    
Gen3:ID78   -2.750542   2.277292  -1.208 0.227926    
Gen4:ID78   -3.231168   2.749486  -1.175 0.240709    
Gen5:ID78   -1.872749   1.411594  -1.327 0.185466    
Gen6:ID78   -1.308675   1.207476  -1.084 0.279186    
Gen3:ID80   -2.147372   1.586228  -1.354 0.176677    
Gen4:ID80   -1.272143   1.231628  -1.033 0.302358    
Gen5:ID80    0.145085   1.062433   0.137 0.891457    
Gen6:ID80   -0.720991   1.193641  -0.604 0.546213    
Gen3:ID83    0.847253   2.019075   0.420 0.675014    
Gen4:ID83    1.695294   1.892558   0.896 0.370985    
Gen5:ID83    0.755477   2.237085   0.338 0.735785    
Gen6:ID83    0.977479   2.050248   0.477 0.633826    
Gen3:ID85   -0.539119   1.201553  -0.449 0.653934    
Gen4:ID85   -0.111520   1.089472  -0.102 0.918527    
Gen5:ID85   -0.330739   1.344317  -0.246 0.805804    
Gen6:ID85   -0.532982   1.418961  -0.376 0.707428    
Gen3:ID87    0.807095   2.993330   0.270 0.787601    
Gen4:ID87   -0.007346   3.323370  -0.002 0.998238    
Gen5:ID87    1.159563   2.901308   0.400 0.689641    
Gen6:ID87   -0.343113   3.592151  -0.096 0.923958    
Gen3:ID89   -1.233145   1.633951  -0.755 0.450930    
Gen4:ID89   -1.278453   1.622498  -0.788 0.431251    
Gen5:ID89   -1.440109   2.240671  -0.643 0.520826    
Gen6:ID89   -1.347209   2.155311  -0.625 0.532331    
Gen3:ID90   -1.232501   1.173873  -1.050 0.294460    
Gen4:ID90   -2.327631   1.433981  -1.623 0.105438    
Gen5:ID90   -0.063752   0.990668  -0.064 0.948725    
Gen6:ID90   -1.339447   1.201562  -1.115 0.265712    
Gen3:ID92   -0.782119   1.335260  -0.586 0.558421    
Gen4:ID92   -0.710894   1.285595  -0.553 0.580634    
Gen5:ID92    1.566795   1.027148   1.525 0.128056    
Gen6:ID92   -0.261706   1.239341  -0.211 0.832880    
Gen3:ID97   -0.267420   1.654094  -0.162 0.871657    
Gen4:ID97    0.380419   1.470381   0.259 0.796000    
Gen5:ID97    0.637177   1.590949   0.401 0.689029    
Gen6:ID97    0.365301   1.672508   0.218 0.827232    
Gen3:ID98   -0.662733   1.328294  -0.499 0.618135    
Gen4:ID98   -1.269260   1.388927  -0.914 0.361422    
Gen5:ID98   -0.737178   1.469882  -0.502 0.616316    
Gen6:ID98   -1.129207   1.628438  -0.693 0.488495    
Gen3:ID100   1.457531   2.532780   0.575 0.565341    
Gen4:ID100   1.111118   2.577147   0.431 0.666627    
Gen5:ID100   2.321790   2.509014   0.925 0.355399    
Gen6:ID100   2.009830   2.554105   0.787 0.431866    
Gen3:ID101   1.900613   2.326914   0.817 0.414595    
Gen4:ID101   1.815185   2.322609   0.782 0.435014    
Gen5:ID101   1.883482   2.418857   0.779 0.436697    
Gen6:ID101   2.146589   2.376492   0.903 0.367002    
Gen3:ID104  -1.167309   1.074136  -1.087 0.277890    
Gen4:ID104  -2.606458   1.681809  -1.550 0.122084    
Gen5:ID104  -1.139406   1.065882  -1.069 0.285807    
Gen6:ID104  -2.033892   1.388089  -1.465 0.143741    
Gen3:ID105  -0.225584   1.236054  -0.183 0.855292    
Gen4:ID105  -1.442529   1.633741  -0.883 0.377857    
Gen5:ID105   0.005970   1.355634   0.004 0.996489    
Gen6:ID105  -0.146044   1.403823  -0.104 0.917202    
Gen3:ID106  -0.220900   1.708075  -0.129 0.897173    
Gen4:ID106   0.006833   1.634461   0.004 0.996667    
Gen5:ID106   1.619138   1.499301   1.080 0.280909    
Gen6:ID106  -0.144233   1.803312  -0.080 0.936296    
Gen3:ID110   0.127407   2.584739   0.049 0.960714    
Gen4:ID110   0.405886   2.287563   0.177 0.859271    
Gen5:ID110   1.083981   2.306413   0.470 0.638655    
Gen6:ID110   0.313033   2.509932   0.125 0.900818    
Gen3:ID112   0.117874   1.468375   0.080 0.936064    
Gen4:ID112  -0.027064   1.478746  -0.018 0.985408    
Gen5:ID112   1.032842   1.376415   0.750 0.453521    
Gen6:ID112   0.267973   1.529522   0.175 0.861022    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 75.14003)

    Null deviance: 163903  on 554  degrees of freedom
Residual deviance:  27271  on 354  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5

Let’s look at the residuals:

seed_data$Fitted <- fitted(DD.glm)
seed_data <- mutate(seed_data,
                           resid2 = ((Seedlings/Nm1) - (Fitted/Nm1))^2)
ggplot(aes(1/Nm1, resid2), data = seed_data) + geom_point() + scale_y_log10() + 
  geom_smooth()
`geom_smooth()` using method = 'loess'

summary(lm(resid2 ~ I(1/Nm1), data = seed_data))

Call:
lm(formula = resid2 ~ I(1/Nm1), data = seed_data)

Residuals:
   Min     1Q Median     3Q    Max 
 -2824  -2546    -56      5 272077 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   -11.63     777.21  -0.015   0.9881   
I(1/Nm1)     2835.73    1063.60   2.666   0.0079 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12130 on 553 degrees of freedom
Multiple R-squared:  0.01269,   Adjusted R-squared:  0.01091 
F-statistic: 7.108 on 1 and 553 DF,  p-value: 0.007896

The regression has an intercept of zero, suggesting that none of the among-pot variation is due to “environmental stochastisity.” However, the log plot reveals a bunch of cases with a residual of zero; inspection of the dataset reveals that these are cases with only a single pot (i.e., singular values of GenID). I need to figure out how to drop those from the dataset before the analysis!

GenID_counts <- table(seed_data$GenID)
singletons <- rownames(GenID_counts)[GenID_counts == 1]
seed_data <- droplevels(seed_data[-match(singletons, seed_data$GenID), ])
DD.lm <- lm(log(Seedlings/Nm1) ~ log(Nm1) + Gen * ID, data = seed_data) 
anova(DD.lm)
Analysis of Variance Table

Response: log(Seedlings/Nm1)
           Df  Sum Sq Mean Sq  F value    Pr(>F)    
log(Nm1)    1 1072.27 1072.27 709.9570 < 2.2e-16 ***
Gen         4   88.87   22.22  14.7102  3.97e-11 ***
ID         36   42.11    1.17   0.7745    0.8234    
Gen:ID    117  163.81    1.40   0.9270    0.6820    
Residuals 354  534.66    1.51                       
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(DD.lm)

Call:
lm(formula = log(Seedlings/Nm1) ~ log(Nm1) + Gen * ID, data = seed_data)

Residuals:
    Min      1Q  Median      3Q     Max 
-3.4725 -0.5346  0.0608  0.6502  2.6645 

Coefficients: (27 not defined because of singularities)
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  1.78599    0.87309   2.046   0.0415 *  
log(Nm1)    -0.43660    0.03108 -14.049   <2e-16 ***
Gen3         1.30529    1.22910   1.062   0.2890    
Gen4         1.20304    1.12203   1.072   0.2844    
Gen5         0.15684    1.12384   0.140   0.8891    
Gen6         0.65412    1.06459   0.614   0.5393    
ID2         -0.43844    0.86909  -0.504   0.6142    
ID3         -0.54593    0.87041  -0.627   0.5309    
ID8          0.82874    1.12189   0.739   0.4606    
ID10         1.07306    1.22904   0.873   0.3832    
ID12         1.55370    1.06446   1.460   0.1453    
ID14         0.70985    1.22899   0.578   0.5639    
ID16        -0.03284    1.22898  -0.027   0.9787    
ID20         1.17331    1.12207   1.046   0.2964    
ID24         0.74561    1.06436   0.701   0.4841    
ID30         0.53141    1.06535   0.499   0.6182    
ID37         0.94599    1.22899   0.770   0.4420    
ID43         0.91479    1.02872   0.889   0.3745    
ID45        -0.90291    0.82443  -1.095   0.2742    
ID58         0.81804    1.12246   0.729   0.4666    
ID64         0.37098    1.22907   0.302   0.7630    
ID68         0.77756    1.12198   0.693   0.4887    
ID69         0.78757    1.22896   0.641   0.5220    
ID72         1.00936    1.06444   0.948   0.3436    
ID73         0.47730    1.06987   0.446   0.6558    
ID74         0.28102    0.94494   0.297   0.7663    
ID75        -0.30177    1.06987  -0.282   0.7781    
ID78         1.13578    0.94494   1.202   0.2302    
ID80         1.40002    0.94494   1.482   0.1393    
ID83         0.12833    1.23185   0.104   0.9171    
ID85         0.63815    1.12505   0.567   0.5709    
ID87        -0.64835    1.06987  -0.606   0.5449    
ID90         1.55632    1.23185   1.263   0.2073    
ID92         0.85246    1.12505   0.758   0.4491    
ID97         0.73894    1.23185   0.600   0.5490    
ID98         1.46316    1.23185   1.188   0.2357    
ID100       -0.03773    1.23185  -0.031   0.9756    
ID101       -0.90630    1.12505  -0.806   0.4210    
ID104        2.90279    1.23185   2.356   0.0190 *  
ID106        0.08285    1.23185   0.067   0.9464    
ID110        0.23345    1.06987   0.218   0.8274    
ID112        0.46555    1.12505   0.414   0.6793    
Gen3:ID2    -0.83047    1.50534  -0.552   0.5815    
Gen4:ID2    -0.32523    1.32811  -0.245   0.8067    
Gen5:ID2     0.89882    1.28167   0.701   0.4836    
Gen6:ID2          NA         NA      NA       NA    
Gen3:ID3    -0.40130    1.50585  -0.266   0.7900    
Gen4:ID3     1.00002    1.32914   0.752   0.4523    
Gen5:ID3     1.59974    1.28191   1.248   0.2129    
Gen6:ID3          NA         NA      NA       NA    
Gen3:ID8    -1.33328    1.58682  -0.840   0.4013    
Gen4:ID8    -1.11609    1.50610  -0.741   0.4592    
Gen5:ID8     0.74749    1.50533   0.497   0.6198    
Gen6:ID8    -2.72659    1.46619  -1.860   0.0638 .  
Gen3:ID10   -1.07110    1.73845  -0.616   0.5382    
Gen4:ID10   -1.78773    1.58675  -1.127   0.2606    
Gen5:ID10    1.28495    1.58657   0.810   0.4185    
Gen6:ID10   -1.29988    1.55062  -0.838   0.4024    
Gen3:ID12   -1.21135    1.50620  -0.804   0.4218    
Gen4:ID12   -1.90996    1.39370  -1.370   0.1714    
Gen5:ID12   -0.50411    1.37402  -0.367   0.7139    
Gen6:ID12   -2.52657    1.32983  -1.900   0.0583 .  
Gen3:ID14   -0.70204    1.73810  -0.404   0.6865    
Gen4:ID14   -0.07674    1.54663  -0.050   0.9605    
Gen5:ID14    0.50740    1.54640   0.328   0.7430    
Gen6:ID14   -1.09967    1.48022  -0.743   0.4580    
Gen3:ID16    0.74469    1.73801   0.428   0.6686    
Gen4:ID16   -0.28106    1.54655  -0.182   0.8559    
Gen5:ID16    1.21610    1.54660   0.786   0.4322    
Gen6:ID16    0.22965    1.50619   0.152   0.8789    
Gen3:ID20   -0.97470    1.54646  -0.630   0.5289    
Gen4:ID20   -1.13200    1.46463  -0.773   0.4401    
Gen5:ID20    0.36067    1.41910   0.254   0.7995    
Gen6:ID20   -1.78062    1.36232  -1.307   0.1920    
Gen3:ID24         NA         NA      NA       NA    
Gen4:ID24         NA         NA      NA       NA    
Gen5:ID24   -1.23153    1.54708  -0.796   0.4265    
Gen6:ID24         NA         NA      NA       NA    
Gen3:ID30         NA         NA      NA       NA    
Gen4:ID30   -2.69798    1.54730  -1.744   0.0821 .  
Gen5:ID30    1.09795    1.55087   0.708   0.4794    
Gen6:ID30         NA         NA      NA       NA    
Gen3:ID37   -2.06866    1.73832  -1.190   0.2348    
Gen4:ID37   -0.97963    1.58658  -0.617   0.5373    
Gen5:ID37    0.30129    1.54681   0.195   0.8457    
Gen6:ID37   -1.37315    1.48010  -0.928   0.3542    
Gen3:ID43   -0.44298    1.45474  -0.305   0.7609    
Gen4:ID43   -0.70395    1.36878  -0.514   0.6074    
Gen5:ID43    0.30094    1.36712   0.220   0.8259    
Gen6:ID43   -2.30305    1.32457  -1.739   0.0830 .  
Gen3:ID45    0.27303    1.39290   0.196   0.8447    
Gen4:ID45    1.87643    1.29867   1.445   0.1494    
Gen5:ID45    1.06209    1.24938   0.850   0.3959    
Gen6:ID45         NA         NA      NA       NA    
Gen3:ID58    0.12857    1.58711   0.081   0.9355    
Gen4:ID58   -0.88546    1.50992  -0.586   0.5580    
Gen5:ID58    0.49525    1.50735   0.329   0.7427    
Gen6:ID58   -1.54672    1.46931  -1.053   0.2932    
Gen3:ID64   -0.63984    1.66409  -0.385   0.7008    
Gen4:ID64   -0.58730    1.58711  -0.370   0.7116    
Gen5:ID64    1.15752    1.52230   0.760   0.4475    
Gen6:ID64   -0.78092    1.48146  -0.527   0.5984    
Gen3:ID68   -1.29369    1.58687  -0.815   0.4155    
Gen4:ID68   -0.91634    1.50632  -0.608   0.5434    
Gen5:ID68    0.01161    1.46276   0.008   0.9937    
Gen6:ID68   -1.04929    1.42049  -0.739   0.4606    
Gen3:ID69   -0.42327    1.66409  -0.254   0.7994    
Gen4:ID69   -1.54499    1.58753  -0.973   0.3311    
Gen5:ID69    1.04075    1.54669   0.673   0.5015    
Gen6:ID69   -1.03891    1.48042  -0.702   0.4833    
Gen3:ID72   -1.00478    1.46275  -0.687   0.4926    
Gen4:ID72   -1.22906    1.37521  -0.894   0.3721    
Gen5:ID72   -0.46668    1.36089  -0.343   0.7319    
Gen6:ID72   -2.07704    1.31545  -1.579   0.1152    
Gen3:ID73         NA         NA      NA       NA    
Gen4:ID73         NA         NA      NA       NA    
Gen5:ID73         NA         NA      NA       NA    
Gen6:ID73         NA         NA      NA       NA    
Gen3:ID74         NA         NA      NA       NA    
Gen4:ID74    0.59767    1.46276   0.409   0.6831    
Gen5:ID74    2.28027    1.46334   1.558   0.1201    
Gen6:ID74         NA         NA      NA       NA    
Gen3:ID75         NA         NA      NA       NA    
Gen4:ID75         NA         NA      NA       NA    
Gen5:ID75         NA         NA      NA       NA    
Gen6:ID75         NA         NA      NA       NA    
Gen3:ID78         NA         NA      NA       NA    
Gen4:ID78         NA         NA      NA       NA    
Gen5:ID78   -1.03559    1.37465  -0.753   0.4517    
Gen6:ID78         NA         NA      NA       NA    
Gen3:ID80   -2.24140    1.54641  -1.449   0.1481    
Gen4:ID80   -0.31165    1.46276  -0.213   0.8314    
Gen5:ID80    0.54875    1.37465   0.399   0.6900    
Gen6:ID80         NA         NA      NA       NA    
Gen3:ID83    0.66062    1.73810   0.380   0.7041    
Gen4:ID83    1.41472    1.66411   0.850   0.3958    
Gen5:ID83    1.00308    1.66533   0.602   0.5473    
Gen6:ID83   -0.16410    1.54659  -0.106   0.9156    
Gen3:ID85   -0.03199    1.58668  -0.020   0.9839    
Gen4:ID85    0.56258    1.50527   0.374   0.7088    
Gen5:ID85    0.33365    1.50662   0.221   0.8249    
Gen6:ID85   -0.01573    1.46295  -0.011   0.9914    
Gen3:ID87         NA         NA      NA       NA    
Gen4:ID87         NA         NA      NA       NA    
Gen5:ID87    0.72705    1.54696   0.470   0.6387    
Gen6:ID87         NA         NA      NA       NA    
Gen3:ID90   -1.08191    1.66412  -0.650   0.5160    
Gen4:ID90   -1.99026    1.54651  -1.287   0.1990    
Gen5:ID90    0.58267    1.52323   0.383   0.7023    
Gen6:ID90   -1.52391    1.46295  -1.042   0.2983    
Gen3:ID92   -0.59698    1.58668  -0.376   0.7070    
Gen4:ID92   -0.41567    1.50527  -0.276   0.7826    
Gen5:ID92    2.20921    1.46425   1.509   0.1323    
Gen6:ID92   -0.78100    1.39243  -0.561   0.5752    
Gen3:ID97   -0.52622    1.73810  -0.303   0.7623    
Gen4:ID97    0.43335    1.66411   0.260   0.7947    
Gen5:ID97    0.94320    1.66533   0.566   0.5715    
Gen6:ID97    0.27881    1.62594   0.171   0.8639    
Gen3:ID98   -0.90303    1.66412  -0.543   0.5877    
Gen4:ID98   -1.95525    1.54651  -1.264   0.2070    
Gen5:ID98   -1.10618    1.54782  -0.715   0.4753    
Gen6:ID98   -1.95746    1.50536  -1.300   0.1943    
Gen3:ID100   0.84551    1.73810   0.486   0.6269    
Gen4:ID100   0.64140    1.66411   0.385   0.7002    
Gen5:ID100   1.58727    1.66533   0.953   0.3412    
Gen6:ID100   0.69073    1.62594   0.425   0.6712    
Gen3:ID101   1.86031    1.58668   1.172   0.2418    
Gen4:ID101   1.93286    1.50527   1.284   0.2000    
Gen5:ID101   2.29557    1.50662   1.524   0.1285    
Gen6:ID101   1.82846    1.46295   1.250   0.2122    
Gen3:ID104  -1.85765    1.73810  -1.069   0.2859    
Gen4:ID104  -3.17278    1.66411  -1.907   0.0574 .  
Gen5:ID104  -1.99215    1.54782  -1.287   0.1989    
Gen6:ID104  -2.98978    1.50536  -1.986   0.0478 *  
Gen3:ID106  -0.41737    1.66412  -0.251   0.8021    
Gen4:ID106   0.54158    1.58668   0.341   0.7331    
Gen5:ID106   1.44681    1.54782   0.935   0.3506    
Gen6:ID106  -0.34875    1.50536  -0.232   0.8169    
Gen3:ID110        NA         NA      NA       NA    
Gen4:ID110   0.25723    1.54641   0.166   0.8680    
Gen5:ID110   1.55455    1.54696   1.005   0.3156    
Gen6:ID110        NA         NA      NA       NA    
Gen3:ID112  -0.09026    1.58668  -0.057   0.9547    
Gen4:ID112  -0.06853    1.50527  -0.046   0.9637    
Gen5:ID112   1.11058    1.46425   0.758   0.4487    
Gen6:ID112  -0.39053    1.41929  -0.275   0.7834    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 1.229 on 354 degrees of freedom
Multiple R-squared:  0.7189,    Adjusted R-squared:  0.5934 
F-statistic: 5.729 on 158 and 354 DF,  p-value: < 2.2e-16
ggplot(aes(log(Nm1), log(Seedlings/Nm1), group = GenID, color = Gen), data = seed_data) +
  geom_point() + geom_smooth(method = "lm", se = FALSE)

DD.glm <- glm(Seedlings ~ log(Nm1) + Gen * ID, data = seed_data, family = quasipoisson) 
car::Anova(DD.glm) 
Analysis of Deviance Table (Type II tests)

Response: Seedlings
         LR Chisq  Df Pr(>Chisq)    
log(Nm1)   431.29   1  < 2.2e-16 ***
Gen        185.62   4  < 2.2e-16 ***
ID          67.75  36  0.0010645 ** 
Gen:ID     175.90 117  0.0003525 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(DD.glm)

Call:
glm(formula = Seedlings ~ log(Nm1) + Gen * ID, family = quasipoisson, 
    data = seed_data)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-25.3458   -5.7571   -0.7389    3.1541   31.1101  

Coefficients: (27 not defined because of singularities)
             Estimate Std. Error t value Pr(>|t|)    
(Intercept)  4.043179   0.451232   8.960   <2e-16 ***
log(Nm1)     0.320337   0.017984  17.812   <2e-16 ***
Gen3         0.508582   0.544455   0.934   0.3509    
Gen4         0.553890   0.509055   1.088   0.2773    
Gen5        -0.190163   0.539657  -0.352   0.7248    
Gen6        -0.182980   0.540954  -0.338   0.7354    
ID2         -0.400706   0.484754  -0.827   0.4090    
ID3         -0.021455   0.406260  -0.053   0.9579    
ID8          0.247817   0.550162   0.450   0.6527    
ID10         0.114426   0.648556   0.176   0.8601    
ID12         0.318970   0.538649   0.592   0.5541    
ID14        -0.098951   0.618344  -0.160   0.8730    
ID16         0.072229   0.597492   0.121   0.9038    
ID20        -0.183721   0.628544  -0.292   0.7702    
ID24         0.163993   0.501472   0.327   0.7438    
ID30         0.279585   0.457183   0.612   0.5412    
ID37         0.350891   0.598379   0.586   0.5580    
ID43         0.396803   0.528499   0.751   0.4533    
ID45        -0.510483   0.460247  -1.109   0.2681    
ID58         0.065428   0.623718   0.105   0.9165    
ID64         0.419852   0.607499   0.691   0.4899    
ID68        -0.108707   0.616558  -0.176   0.8601    
ID69        -0.160725   0.664430  -0.242   0.8090    
ID72         0.275853   0.537597   0.513   0.6082    
ID73         0.599945   0.733991   0.817   0.4143    
ID74        -0.504465   0.989021  -0.510   0.6103    
ID75        -1.462305   1.876139  -0.779   0.4363    
ID78        -0.276681   0.894529  -0.309   0.7573    
ID80         0.031620   0.784600   0.040   0.9679    
ID83        -1.517451   1.791424  -0.847   0.3975    
ID85        -0.251443   0.876600  -0.287   0.7744    
ID87        -1.988398   2.425787  -0.820   0.4129    
ID90         0.369619   0.811782   0.455   0.6492    
ID92        -0.379618   0.919689  -0.413   0.6800    
ID97        -0.728993   1.252908  -0.582   0.5610    
ID98        -0.225467   1.014555  -0.222   0.8243    
ID100       -2.097269   2.360245  -0.889   0.3748    
ID101       -2.369203   2.213498  -1.070   0.2852    
ID104        0.812749   0.704261   1.154   0.2493    
ID106       -0.975127   1.396775  -0.698   0.4856    
ID110       -0.839775   1.391806  -0.603   0.5466    
ID112       -1.014657   1.189767  -0.853   0.3943    
Gen3:ID2    -0.307803   0.739524  -0.416   0.6775    
Gen4:ID2     0.606803   0.605179   1.003   0.3167    
Gen5:ID2     0.466544   0.657278   0.710   0.4783    
Gen6:ID2           NA         NA      NA       NA    
Gen3:ID3    -0.276063   0.608762  -0.453   0.6505    
Gen4:ID3     0.223899   0.533329   0.420   0.6749    
Gen5:ID3     0.507727   0.558195   0.910   0.3637    
Gen6:ID3           NA         NA      NA       NA    
Gen3:ID8    -0.366896   0.682695  -0.537   0.5913    
Gen4:ID8    -0.934527   0.673860  -1.387   0.1664    
Gen5:ID8     0.763515   0.655545   1.165   0.2449    
Gen6:ID8    -1.804249   0.837205  -2.155   0.0318 *  
Gen3:ID10   -0.419608   0.803372  -0.522   0.6018    
Gen4:ID10   -0.094649   0.735702  -0.129   0.8977    
Gen5:ID10    1.060966   0.737561   1.438   0.1512    
Gen6:ID10    0.020512   0.755992   0.027   0.9784    
Gen3:ID12   -0.378844   0.658266  -0.576   0.5653    
Gen4:ID12   -0.958024   0.635016  -1.509   0.1323    
Gen5:ID12    0.357942   0.641027   0.558   0.5769    
Gen6:ID12   -1.262101   0.701813  -1.798   0.0730 .  
Gen3:ID14    0.121812   0.754102   0.162   0.8718    
Gen4:ID14   -0.512795   0.736078  -0.697   0.4865    
Gen5:ID14    0.780078   0.717626   1.087   0.2778    
Gen6:ID14   -0.045252   0.735141  -0.062   0.9510    
Gen3:ID16   -0.061494   0.741496  -0.083   0.9340    
Gen4:ID16   -1.202151   0.759309  -1.583   0.1143    
Gen5:ID16    0.342530   0.717455   0.477   0.6334    
Gen6:ID16    0.100265   0.712884   0.141   0.8882    
Gen3:ID20   -0.151832   0.760273  -0.200   0.8418    
Gen4:ID20    0.257355   0.700666   0.367   0.7136    
Gen5:ID20    1.222094   0.712657   1.715   0.0872 .  
Gen6:ID20    0.079012   0.729305   0.108   0.9138    
Gen3:ID24          NA         NA      NA       NA    
Gen4:ID24          NA         NA      NA       NA    
Gen5:ID24    0.246244   0.690904   0.356   0.7217    
Gen6:ID24          NA         NA      NA       NA    
Gen3:ID30          NA         NA      NA       NA    
Gen4:ID30   -1.831454   0.834158  -2.196   0.0288 *  
Gen5:ID30    0.222646   0.677205   0.329   0.7425    
Gen6:ID30          NA         NA      NA       NA    
Gen3:ID37   -1.148642   0.807422  -1.423   0.1557    
Gen4:ID37   -0.211171   0.697251  -0.303   0.7622    
Gen5:ID37    0.222909   0.709411   0.314   0.7535    
Gen6:ID37   -0.468397   0.726377  -0.645   0.5194    
Gen3:ID43   -0.394548   0.645279  -0.611   0.5413    
Gen4:ID43   -0.235858   0.602237  -0.392   0.6956    
Gen5:ID43    0.460569   0.625507   0.736   0.4620    
Gen6:ID43   -1.422365   0.692022  -2.055   0.0406 *  
Gen3:ID45   -0.255481   0.698781  -0.366   0.7149    
Gen4:ID45    0.615898   0.578706   1.064   0.2879    
Gen5:ID45    0.749337   0.603219   1.242   0.2150    
Gen6:ID45          NA         NA      NA       NA    
Gen3:ID58    0.312379   0.732627   0.426   0.6701    
Gen4:ID58   -0.298223   0.705544  -0.423   0.6728    
Gen5:ID58    0.897457   0.714474   1.256   0.2099    
Gen6:ID58   -0.269180   0.748447  -0.360   0.7193    
Gen3:ID64   -0.025388   0.725404  -0.035   0.9721    
Gen4:ID64   -1.448796   0.752154  -1.926   0.0549 .  
Gen5:ID64   -0.005864   0.723116  -0.008   0.9935    
Gen6:ID64   -0.960080   0.750582  -1.279   0.2017    
Gen3:ID68   -0.650878   0.787310  -0.827   0.4090    
Gen4:ID68   -0.517148   0.735852  -0.703   0.4826    
Gen5:ID68    0.511472   0.728950   0.702   0.4834    
Gen6:ID68   -0.089564   0.748860  -0.120   0.9049    
Gen3:ID69    0.678626   0.769246   0.882   0.3783    
Gen4:ID69   -1.151739   0.812405  -1.418   0.1572    
Gen5:ID69    0.913132   0.763121   1.197   0.2323    
Gen6:ID69    0.041416   0.775749   0.053   0.9575    
Gen3:ID72   -0.107015   0.650276  -0.165   0.8694    
Gen4:ID72   -1.128138   0.636728  -1.772   0.0773 .  
Gen5:ID72    0.059203   0.644784   0.092   0.9269    
Gen6:ID72   -1.197553   0.694305  -1.725   0.0854 .  
Gen3:ID73          NA         NA      NA       NA    
Gen4:ID73          NA         NA      NA       NA    
Gen5:ID73          NA         NA      NA       NA    
Gen6:ID73          NA         NA      NA       NA    
Gen3:ID74          NA         NA      NA       NA    
Gen4:ID74   -0.049553   1.300382  -0.038   0.9696    
Gen5:ID74    1.156798   1.216100   0.951   0.3421    
Gen6:ID74          NA         NA      NA       NA    
Gen3:ID75          NA         NA      NA       NA    
Gen4:ID75          NA         NA      NA       NA    
Gen5:ID75          NA         NA      NA       NA    
Gen6:ID75          NA         NA      NA       NA    
Gen3:ID78          NA         NA      NA       NA    
Gen4:ID78          NA         NA      NA       NA    
Gen5:ID78   -0.564074   1.455171  -0.388   0.6985    
Gen6:ID78          NA         NA      NA       NA    
Gen3:ID80   -1.426381   1.518337  -0.939   0.3481    
Gen4:ID80   -0.551152   1.142841  -0.482   0.6299    
Gen5:ID80    0.866075   0.957986   0.904   0.3666    
Gen6:ID80          NA         NA      NA       NA    
Gen3:ID83    0.847253   2.019075   0.420   0.6750    
Gen4:ID83    1.695294   1.892558   0.896   0.3710    
Gen5:ID83    0.755477   2.237085   0.338   0.7358    
Gen6:ID83    0.977479   2.050248   0.477   0.6338    
Gen3:ID85   -0.539119   1.201553  -0.449   0.6539    
Gen4:ID85   -0.111520   1.089472  -0.102   0.9185    
Gen5:ID85   -0.330739   1.344317  -0.246   0.8058    
Gen6:ID85   -0.532982   1.418961  -0.376   0.7074    
Gen3:ID87          NA         NA      NA       NA    
Gen4:ID87          NA         NA      NA       NA    
Gen5:ID87    1.502677   2.695457   0.557   0.5775    
Gen6:ID87          NA         NA      NA       NA    
Gen3:ID90   -1.232501   1.173873  -1.050   0.2945    
Gen4:ID90   -2.327631   1.433981  -1.623   0.1054    
Gen5:ID90   -0.063752   0.990668  -0.064   0.9487    
Gen6:ID90   -1.339447   1.201562  -1.115   0.2657    
Gen3:ID92   -0.782119   1.335260  -0.586   0.5584    
Gen4:ID92   -0.710894   1.285595  -0.553   0.5806    
Gen5:ID92    1.566795   1.027148   1.525   0.1281    
Gen6:ID92   -0.261706   1.239341  -0.211   0.8329    
Gen3:ID97   -0.267420   1.654094  -0.162   0.8717    
Gen4:ID97    0.380419   1.470381   0.259   0.7960    
Gen5:ID97    0.637177   1.590949   0.401   0.6890    
Gen6:ID97    0.365301   1.672508   0.218   0.8272    
Gen3:ID98   -0.662733   1.328294  -0.499   0.6181    
Gen4:ID98   -1.269260   1.388927  -0.914   0.3614    
Gen5:ID98   -0.737178   1.469882  -0.502   0.6163    
Gen6:ID98   -1.129207   1.628438  -0.693   0.4885    
Gen3:ID100   1.457531   2.532780   0.575   0.5653    
Gen4:ID100   1.111118   2.577147   0.431   0.6666    
Gen5:ID100   2.321790   2.509014   0.925   0.3554    
Gen6:ID100   2.009830   2.554105   0.787   0.4319    
Gen3:ID101   1.900613   2.326914   0.817   0.4146    
Gen4:ID101   1.815185   2.322609   0.782   0.4350    
Gen5:ID101   1.883482   2.418857   0.779   0.4367    
Gen6:ID101   2.146589   2.376492   0.903   0.3670    
Gen3:ID104  -1.167309   1.074136  -1.087   0.2779    
Gen4:ID104  -2.606458   1.681809  -1.550   0.1221    
Gen5:ID104  -1.139406   1.065882  -1.069   0.2858    
Gen6:ID104  -2.033892   1.388089  -1.465   0.1437    
Gen3:ID106  -0.220900   1.708075  -0.129   0.8972    
Gen4:ID106   0.006833   1.634461   0.004   0.9967    
Gen5:ID106   1.619138   1.499301   1.080   0.2809    
Gen6:ID106  -0.144233   1.803312  -0.080   0.9363    
Gen3:ID110         NA         NA      NA       NA    
Gen4:ID110   0.092853   1.670387   0.056   0.9557    
Gen5:ID110   0.770948   1.696050   0.455   0.6497    
Gen6:ID110         NA         NA      NA       NA    
Gen3:ID112   0.117874   1.468375   0.080   0.9361    
Gen4:ID112  -0.027064   1.478746  -0.018   0.9854    
Gen5:ID112   1.032842   1.376415   0.750   0.4535    
Gen6:ID112   0.267973   1.529522   0.175   0.8610    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 75.14003)

    Null deviance: 147594  on 512  degrees of freedom
Residual deviance:  27271  on 354  degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 5
seed_data$Fitted <- fitted(DD.glm)
seed_data <- mutate(seed_data,
                           resid2 = ((Seedlings/Nm1) - (Fitted/Nm1))^2)
ggplot(aes(1/Nm1, resid2), data = seed_data) + geom_point() + scale_y_log10() + 
  geom_smooth()
`geom_smooth()` using method = 'loess'

summary(lm(resid2 ~ I(1/Nm1), data = seed_data))

Call:
lm(formula = resid2 ~ I(1/Nm1), data = seed_data)

Residuals:
   Min     1Q Median     3Q    Max 
 -3131  -2730    -24     15 271770 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept)   -21.57     829.56  -0.026   0.9793   
I(1/Nm1)     3152.28    1149.10   2.743   0.0063 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 12600 on 511 degrees of freedom
Multiple R-squared:  0.01451,   Adjusted R-squared:  0.01258 
F-statistic: 7.525 on 1 and 511 DF,  p-value: 0.006297

This does the trick. We still have a zero intercept. There appears to be one singleton remaining. The construction of seed_data is now complex enough that it should be in a munge script. And I still need to work out how to do the random effects model!